Costantino Pacilio, Massimo Vaglio, A. Maselli, P. Pani
{"title":"作为粒子物理实验室的引力波探测器:用玻色子-星双星的相干激励模型约束标量相互作用","authors":"Costantino Pacilio, Massimo Vaglio, A. Maselli, P. Pani","doi":"10.1103/physrevd.102.083002","DOIUrl":null,"url":null,"abstract":"Gravitational-wave (GW) detections of binary neutron star coalescences play a crucial role to constrain the microscopic interaction of matter at ultrahigh density. Similarly, if boson stars exist in the universe their coalescence can be used to constrain the fundamental coupling constants of a scalar field theory. We develop the first coherent waveform model for the inspiral of boson stars with quartic interactions. The waveform includes coherently spin-induced quadrupolar and tidal-deformability contributions in terms of the masses and spins of the binary and of a single coupling constant of the theory. We show that future instruments such as the Einstein Telescope and the Laser Interferometer Space Antenna can provide strong complementary bounds on bosonic self-interactions, while the constraining power of current detectors is marginal.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Gravitational-wave detectors as particle-physics laboratories: Constraining scalar interactions with a coherent inspiral model of boson-star binaries\",\"authors\":\"Costantino Pacilio, Massimo Vaglio, A. Maselli, P. Pani\",\"doi\":\"10.1103/physrevd.102.083002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gravitational-wave (GW) detections of binary neutron star coalescences play a crucial role to constrain the microscopic interaction of matter at ultrahigh density. Similarly, if boson stars exist in the universe their coalescence can be used to constrain the fundamental coupling constants of a scalar field theory. We develop the first coherent waveform model for the inspiral of boson stars with quartic interactions. The waveform includes coherently spin-induced quadrupolar and tidal-deformability contributions in terms of the masses and spins of the binary and of a single coupling constant of the theory. We show that future instruments such as the Einstein Telescope and the Laser Interferometer Space Antenna can provide strong complementary bounds on bosonic self-interactions, while the constraining power of current detectors is marginal.\",\"PeriodicalId\":8455,\"journal\":{\"name\":\"arXiv: General Relativity and Quantum Cosmology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: General Relativity and Quantum Cosmology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.102.083002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: General Relativity and Quantum Cosmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevd.102.083002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gravitational-wave detectors as particle-physics laboratories: Constraining scalar interactions with a coherent inspiral model of boson-star binaries
Gravitational-wave (GW) detections of binary neutron star coalescences play a crucial role to constrain the microscopic interaction of matter at ultrahigh density. Similarly, if boson stars exist in the universe their coalescence can be used to constrain the fundamental coupling constants of a scalar field theory. We develop the first coherent waveform model for the inspiral of boson stars with quartic interactions. The waveform includes coherently spin-induced quadrupolar and tidal-deformability contributions in terms of the masses and spins of the binary and of a single coupling constant of the theory. We show that future instruments such as the Einstein Telescope and the Laser Interferometer Space Antenna can provide strong complementary bounds on bosonic self-interactions, while the constraining power of current detectors is marginal.