{"title":"寡核苷酸缀合物作为潜在的反义药物,具有改善的摄取、生物分布、靶向递送和作用机制。","authors":"M. Manoharan","doi":"10.1089/108729002760070849","DOIUrl":null,"url":null,"abstract":"This review summarizes the effect of conjugating small molecules and large biomacromolecules to antisense oligonucleotides to improve their therapeutic potential. In many cases, favorable changes in pharmacokinetic and pharmacodynamic properties were observed. Opportunities exist to change the terminating mechanism of antisense action or to enhance the RNase H mode of action via conjugate formation.","PeriodicalId":7996,"journal":{"name":"Antisense & nucleic acid drug development","volume":"28 1","pages":"103-28"},"PeriodicalIF":0.0000,"publicationDate":"2002-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"175","resultStr":"{\"title\":\"Oligonucleotide conjugates as potential antisense drugs with improved uptake, biodistribution, targeted delivery, and mechanism of action.\",\"authors\":\"M. Manoharan\",\"doi\":\"10.1089/108729002760070849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review summarizes the effect of conjugating small molecules and large biomacromolecules to antisense oligonucleotides to improve their therapeutic potential. In many cases, favorable changes in pharmacokinetic and pharmacodynamic properties were observed. Opportunities exist to change the terminating mechanism of antisense action or to enhance the RNase H mode of action via conjugate formation.\",\"PeriodicalId\":7996,\"journal\":{\"name\":\"Antisense & nucleic acid drug development\",\"volume\":\"28 1\",\"pages\":\"103-28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"175\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antisense & nucleic acid drug development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/108729002760070849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antisense & nucleic acid drug development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/108729002760070849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Oligonucleotide conjugates as potential antisense drugs with improved uptake, biodistribution, targeted delivery, and mechanism of action.
This review summarizes the effect of conjugating small molecules and large biomacromolecules to antisense oligonucleotides to improve their therapeutic potential. In many cases, favorable changes in pharmacokinetic and pharmacodynamic properties were observed. Opportunities exist to change the terminating mechanism of antisense action or to enhance the RNase H mode of action via conjugate formation.