基于Banach空间的boussinesq型模型全混合有限元法的后检误差分析

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
G. Gatica, Cristian Inzunza, R. Ruiz-Baier, Felipe Sandoval
{"title":"基于Banach空间的boussinesq型模型全混合有限元法的后检误差分析","authors":"G. Gatica, Cristian Inzunza, R. Ruiz-Baier, Felipe Sandoval","doi":"10.1515/jnma-2021-0101","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we consider Banach spaces-based fully-mixed variational formulations recently proposed for the Boussinesq and the Oberbeck–Boussinesq models, and develop reliable and efficient residual-based a posteriori error estimators for the 2D and 3D versions of the associated mixed finite element schemes. For the reliability analysis, we employ the global inf-sup condition for each sub-model, namely Navier–Stokes and heat equations in the case of Boussinesq, along with suitable Helmholtz decomposition in nonstandard Banach spaces, the approximation properties of the Raviart–Thomas and Clément interpolants, further regularity on the continuous solutions, and small data assumptions. In turn, the efficiency estimates follow from inverse inequalities and the localization technique through bubble functions in adequately defined local Lp spaces. Finally, several numerical results including natural convection in 3D differentially heated enclosures, are reported with the aim of confirming the theoretical properties of the estimators and illustrating the performance of the associated adaptive algorithm.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A posteriori error analysis of Banach spaces-based fully-mixed finite element methods for Boussinesq-type models\",\"authors\":\"G. Gatica, Cristian Inzunza, R. Ruiz-Baier, Felipe Sandoval\",\"doi\":\"10.1515/jnma-2021-0101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we consider Banach spaces-based fully-mixed variational formulations recently proposed for the Boussinesq and the Oberbeck–Boussinesq models, and develop reliable and efficient residual-based a posteriori error estimators for the 2D and 3D versions of the associated mixed finite element schemes. For the reliability analysis, we employ the global inf-sup condition for each sub-model, namely Navier–Stokes and heat equations in the case of Boussinesq, along with suitable Helmholtz decomposition in nonstandard Banach spaces, the approximation properties of the Raviart–Thomas and Clément interpolants, further regularity on the continuous solutions, and small data assumptions. In turn, the efficiency estimates follow from inverse inequalities and the localization technique through bubble functions in adequately defined local Lp spaces. Finally, several numerical results including natural convection in 3D differentially heated enclosures, are reported with the aim of confirming the theoretical properties of the estimators and illustrating the performance of the associated adaptive algorithm.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2021-0101\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2021-0101","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 6

摘要

摘要本文考虑了最近提出的基于Banach空间的Boussinesq和Oberbeck-Boussinesq模型的全混合变分公式,并为相关的二维和三维混合有限元格式开发了可靠有效的基于残差的后测误差估计器。对于可靠性分析,我们采用了每个子模型(即Boussinesq情况下的Navier-Stokes方程和heat方程)的全局自适应条件,以及非标准Banach空间中适当的Helmholtz分解、Raviart-Thomas和climement插值的近似性质、连续解的进一步正则性和小数据假设。反过来,效率估计遵循逆不等式和通过气泡函数在充分定义的局部Lp空间中的定位技术。最后,给出了包括三维差热环境中自然对流在内的几个数值结果,目的是验证估计器的理论性质,并说明相关自适应算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A posteriori error analysis of Banach spaces-based fully-mixed finite element methods for Boussinesq-type models
Abstract In this paper we consider Banach spaces-based fully-mixed variational formulations recently proposed for the Boussinesq and the Oberbeck–Boussinesq models, and develop reliable and efficient residual-based a posteriori error estimators for the 2D and 3D versions of the associated mixed finite element schemes. For the reliability analysis, we employ the global inf-sup condition for each sub-model, namely Navier–Stokes and heat equations in the case of Boussinesq, along with suitable Helmholtz decomposition in nonstandard Banach spaces, the approximation properties of the Raviart–Thomas and Clément interpolants, further regularity on the continuous solutions, and small data assumptions. In turn, the efficiency estimates follow from inverse inequalities and the localization technique through bubble functions in adequately defined local Lp spaces. Finally, several numerical results including natural convection in 3D differentially heated enclosures, are reported with the aim of confirming the theoretical properties of the estimators and illustrating the performance of the associated adaptive algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信