Xu Li, Lei-jie Wu, Y. J. Wang, Huan Liu, Zu-yu Chen, Liu-jie Jing, Yu Wang
{"title":"一种数据驱动的TBM施工岩石状态实时感知方法","authors":"Xu Li, Lei-jie Wu, Y. J. Wang, Huan Liu, Zu-yu Chen, Liu-jie Jing, Yu Wang","doi":"10.1139/cgj-2023-0168","DOIUrl":null,"url":null,"abstract":"In Tunnel boring Machine (TBM) construction, the presence of collapsible rock mass (CRM) can lead to accidents such as collapse and jamming. This study presents a novel CRM early warning strategy based on real-time TBM rock fragmentation data to improve safety and efficiency in CRM conditions. The strategy includes a qualitative classification model and a quantitative probability model for CRM identification. The results indicate that the distribution dissimilarity index β effectively reflect the significance of variables across CRM and non-CRM datasets. Various parameters, including TPI, FPI, WR, and AF, show discriminatory ability between CRM and non-CRM samples. In particular, the CRM-weighted index, which combines the strengths of the individual indices, achieves a distributional dissimilarity index of 1.05, significantly higher than any of the individual indices. The qualitative classification model proves effective in identifying samples from collapse areas, demonstrating ability to identify samples located in adverse geological condition. The quantitative model shows that the probability of CRM is generally higher in adverse geological area samples, particularly in zones where collapse has occurred, with a CRM probability is approaching 1. The proposed strategy provides accurate early warnings to prevent collapse accidents and represents a practical approach to improving the safety and efficiency.","PeriodicalId":9382,"journal":{"name":"Canadian Geotechnical Journal","volume":"56 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A data driven real-time perception method of rock condition in TBM construction\",\"authors\":\"Xu Li, Lei-jie Wu, Y. J. Wang, Huan Liu, Zu-yu Chen, Liu-jie Jing, Yu Wang\",\"doi\":\"10.1139/cgj-2023-0168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Tunnel boring Machine (TBM) construction, the presence of collapsible rock mass (CRM) can lead to accidents such as collapse and jamming. This study presents a novel CRM early warning strategy based on real-time TBM rock fragmentation data to improve safety and efficiency in CRM conditions. The strategy includes a qualitative classification model and a quantitative probability model for CRM identification. The results indicate that the distribution dissimilarity index β effectively reflect the significance of variables across CRM and non-CRM datasets. Various parameters, including TPI, FPI, WR, and AF, show discriminatory ability between CRM and non-CRM samples. In particular, the CRM-weighted index, which combines the strengths of the individual indices, achieves a distributional dissimilarity index of 1.05, significantly higher than any of the individual indices. The qualitative classification model proves effective in identifying samples from collapse areas, demonstrating ability to identify samples located in adverse geological condition. The quantitative model shows that the probability of CRM is generally higher in adverse geological area samples, particularly in zones where collapse has occurred, with a CRM probability is approaching 1. The proposed strategy provides accurate early warnings to prevent collapse accidents and represents a practical approach to improving the safety and efficiency.\",\"PeriodicalId\":9382,\"journal\":{\"name\":\"Canadian Geotechnical Journal\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Geotechnical Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1139/cgj-2023-0168\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Geotechnical Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1139/cgj-2023-0168","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
A data driven real-time perception method of rock condition in TBM construction
In Tunnel boring Machine (TBM) construction, the presence of collapsible rock mass (CRM) can lead to accidents such as collapse and jamming. This study presents a novel CRM early warning strategy based on real-time TBM rock fragmentation data to improve safety and efficiency in CRM conditions. The strategy includes a qualitative classification model and a quantitative probability model for CRM identification. The results indicate that the distribution dissimilarity index β effectively reflect the significance of variables across CRM and non-CRM datasets. Various parameters, including TPI, FPI, WR, and AF, show discriminatory ability between CRM and non-CRM samples. In particular, the CRM-weighted index, which combines the strengths of the individual indices, achieves a distributional dissimilarity index of 1.05, significantly higher than any of the individual indices. The qualitative classification model proves effective in identifying samples from collapse areas, demonstrating ability to identify samples located in adverse geological condition. The quantitative model shows that the probability of CRM is generally higher in adverse geological area samples, particularly in zones where collapse has occurred, with a CRM probability is approaching 1. The proposed strategy provides accurate early warnings to prevent collapse accidents and represents a practical approach to improving the safety and efficiency.
期刊介绍:
The Canadian Geotechnical Journal features articles, notes, reviews, and discussions related to new developments in geotechnical and geoenvironmental engineering, and applied sciences. The topics of papers written by researchers and engineers/scientists active in industry include soil and rock mechanics, material properties and fundamental behaviour, site characterization, foundations, excavations, tunnels, dams and embankments, slopes, landslides, geological and rock engineering, ground improvement, hydrogeology and contaminant hydrogeology, geochemistry, waste management, geosynthetics, offshore engineering, ice, frozen ground and northern engineering, risk and reliability applications, and physical and numerical modelling.
Contributions that have practical relevance are preferred, including case records. Purely theoretical contributions are not generally published unless they are on a topic of special interest (like unsaturated soil mechanics or cold regions geotechnics) or they have direct practical value.