{"title":"用第一原理电化学相图建模腐蚀","authors":"Liang-Feng Huang, J. Scully, J. Rondinelli","doi":"10.1146/ANNUREV-MATSCI-070218-010105","DOIUrl":null,"url":null,"abstract":"Understanding and predicting materials corrosion under electrochemical environments are of increasing importance to both established and developing industries and technologies, including construction, marine materials, geology, and biomedicine, as well as to energy generation, storage, and conversion. Owing to recent progress in the accuracy and capability of density functional theory (DFT) calculations to describe the thermodynamic stability of materials, this powerful computational tool can be used both to describe materials corrosion and to design materials with the desired corrosion resistance by using first-principles electrochemical phase diagrams. We review the progress in simulating electrochemical phase diagrams of bulk solids, surface systems, and point defects in materials using DFT methods as well as the application of these ab initio phase diagrams in realistic environments. We conclude by summarizing the remaining challenges in the thermodynamic modeling of materials corrosion and promising future research directions.","PeriodicalId":8055,"journal":{"name":"Annual Review of Materials Research","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Modeling Corrosion with First-Principles Electrochemical Phase Diagrams\",\"authors\":\"Liang-Feng Huang, J. Scully, J. Rondinelli\",\"doi\":\"10.1146/ANNUREV-MATSCI-070218-010105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding and predicting materials corrosion under electrochemical environments are of increasing importance to both established and developing industries and technologies, including construction, marine materials, geology, and biomedicine, as well as to energy generation, storage, and conversion. Owing to recent progress in the accuracy and capability of density functional theory (DFT) calculations to describe the thermodynamic stability of materials, this powerful computational tool can be used both to describe materials corrosion and to design materials with the desired corrosion resistance by using first-principles electrochemical phase diagrams. We review the progress in simulating electrochemical phase diagrams of bulk solids, surface systems, and point defects in materials using DFT methods as well as the application of these ab initio phase diagrams in realistic environments. We conclude by summarizing the remaining challenges in the thermodynamic modeling of materials corrosion and promising future research directions.\",\"PeriodicalId\":8055,\"journal\":{\"name\":\"Annual Review of Materials Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1146/ANNUREV-MATSCI-070218-010105\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1146/ANNUREV-MATSCI-070218-010105","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Modeling Corrosion with First-Principles Electrochemical Phase Diagrams
Understanding and predicting materials corrosion under electrochemical environments are of increasing importance to both established and developing industries and technologies, including construction, marine materials, geology, and biomedicine, as well as to energy generation, storage, and conversion. Owing to recent progress in the accuracy and capability of density functional theory (DFT) calculations to describe the thermodynamic stability of materials, this powerful computational tool can be used both to describe materials corrosion and to design materials with the desired corrosion resistance by using first-principles electrochemical phase diagrams. We review the progress in simulating electrochemical phase diagrams of bulk solids, surface systems, and point defects in materials using DFT methods as well as the application of these ab initio phase diagrams in realistic environments. We conclude by summarizing the remaining challenges in the thermodynamic modeling of materials corrosion and promising future research directions.
期刊介绍:
The Annual Review of Materials Research, published since 1971, is a journal that covers significant developments in the field of materials research. It includes original methodologies, materials phenomena, material systems, and special keynote topics. The current volume of the journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The journal defines its scope as encompassing significant developments in materials science, including methodologies for studying materials and materials phenomena. It is indexed and abstracted in various databases, such as Scopus, Science Citation Index Expanded, Civil Engineering Abstracts, INSPEC, and Academic Search, among others.