基于实例选择方法的数据汇总元学习

K. Smith‐Miles, R. Islam
{"title":"基于实例选择方法的数据汇总元学习","authors":"K. Smith‐Miles, R. Islam","doi":"10.1109/CEC.2010.5585986","DOIUrl":null,"url":null,"abstract":"The purpose of instance selection is to identify which instances (examples, patterns) in a large dataset should be selected as representatives of the entire dataset, without significant loss of information. When a machine learning method is applied to the reduced dataset, the accuracy of the model should not be significantly worse than if the same method were applied to the entire dataset. The reducibility of any dataset, and hence the success of instance selection methods, surely depends on the characteristics of the dataset, as well as the machine learning method. This paper adopts a meta-learning approach, via an empirical study of 112 classification datasets from the UCI Repository [1], to explore the relationship between data characteristics, machine learning methods, and the success of instance selection method.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"5 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Meta-learning for data summarization based on instance selection method\",\"authors\":\"K. Smith‐Miles, R. Islam\",\"doi\":\"10.1109/CEC.2010.5585986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of instance selection is to identify which instances (examples, patterns) in a large dataset should be selected as representatives of the entire dataset, without significant loss of information. When a machine learning method is applied to the reduced dataset, the accuracy of the model should not be significantly worse than if the same method were applied to the entire dataset. The reducibility of any dataset, and hence the success of instance selection methods, surely depends on the characteristics of the dataset, as well as the machine learning method. This paper adopts a meta-learning approach, via an empirical study of 112 classification datasets from the UCI Repository [1], to explore the relationship between data characteristics, machine learning methods, and the success of instance selection method.\",\"PeriodicalId\":6344,\"journal\":{\"name\":\"2009 IEEE Congress on Evolutionary Computation\",\"volume\":\"5 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2010.5585986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2010.5585986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

实例选择的目的是确定应该选择大型数据集中的哪些实例(示例、模式)作为整个数据集的代表,而不会造成重大的信息损失。当将机器学习方法应用于简化后的数据集时,模型的准确性不应明显低于将相同方法应用于整个数据集时的准确性。任何数据集的可约性,以及实例选择方法的成功,当然取决于数据集的特征,以及机器学习方法。本文采用元学习方法,通过对UCI Repository[1]中的112个分类数据集进行实证研究,探讨数据特征、机器学习方法和实例选择方法成功与否之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Meta-learning for data summarization based on instance selection method
The purpose of instance selection is to identify which instances (examples, patterns) in a large dataset should be selected as representatives of the entire dataset, without significant loss of information. When a machine learning method is applied to the reduced dataset, the accuracy of the model should not be significantly worse than if the same method were applied to the entire dataset. The reducibility of any dataset, and hence the success of instance selection methods, surely depends on the characteristics of the dataset, as well as the machine learning method. This paper adopts a meta-learning approach, via an empirical study of 112 classification datasets from the UCI Repository [1], to explore the relationship between data characteristics, machine learning methods, and the success of instance selection method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信