{"title":"作物集约化对土壤质量和有机碳储量的影响——以巴基斯坦喀喇昆仑中部哈拉莫什河谷为例","authors":"Muneer Alam, F. Begum, Fozia Hussain","doi":"10.1080/13504509.2022.2116613","DOIUrl":null,"url":null,"abstract":"ABSTRACT Agricultural operations such as excessive tillage and intense cropping deplete soil organic carbon (SOC), making sustainable agriculture management critical for reducing greenhouse gas (GHG) emissions. This study evaluates the impact of crop intensification on soil quality and soil organic carbon stocks (SOCS) under double cropping (DC) and single cropping pattern (SC) in upper Haramosh of Gilgit, Pakistan. Soil samples were taken from cropping zones (DC and SC) under three depths (0–20, 20–40, and 40–60 cm). Standard methods were used to analyze selected soil quality parameters and SOC. Statistical analysis using ANOVA showed that soil temperature, moisture, pH, SOC, and SOCS highly significantly differed (p < 0.001) for different cropping patterns (DC and SC), whereas bulk density (BD), electrical conductivity (EC), and clay were not significantly different. The SC retained 4.4% more moisture and had lower BD than the DC, while BD increased with increasing depth. The texture of the soil was sandy loam at both cropping zones. The mean SOC and SOCS of SC were greater (by 12%) than in the DC zone. Pearson correlation showed a significant and positive correlation of SOC stock with SOC, moisture (p < 0.01), and EC (p < 0.05), but had a negative correlation with bulk density, pH (p < 0.01), and sand (p < 0.05). DC apparently degraded soil quality and organic carbon reserves, thus reducing the soil health in mountain agriculture.","PeriodicalId":50287,"journal":{"name":"International Journal of Sustainable Development and World Ecology","volume":"32 1","pages":"37 - 48"},"PeriodicalIF":6.5000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crop intensification effects on soil quality and organic carbon stocks: a case study of Haramosh Valley in Central Karakorum, Pakistan\",\"authors\":\"Muneer Alam, F. Begum, Fozia Hussain\",\"doi\":\"10.1080/13504509.2022.2116613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Agricultural operations such as excessive tillage and intense cropping deplete soil organic carbon (SOC), making sustainable agriculture management critical for reducing greenhouse gas (GHG) emissions. This study evaluates the impact of crop intensification on soil quality and soil organic carbon stocks (SOCS) under double cropping (DC) and single cropping pattern (SC) in upper Haramosh of Gilgit, Pakistan. Soil samples were taken from cropping zones (DC and SC) under three depths (0–20, 20–40, and 40–60 cm). Standard methods were used to analyze selected soil quality parameters and SOC. Statistical analysis using ANOVA showed that soil temperature, moisture, pH, SOC, and SOCS highly significantly differed (p < 0.001) for different cropping patterns (DC and SC), whereas bulk density (BD), electrical conductivity (EC), and clay were not significantly different. The SC retained 4.4% more moisture and had lower BD than the DC, while BD increased with increasing depth. The texture of the soil was sandy loam at both cropping zones. The mean SOC and SOCS of SC were greater (by 12%) than in the DC zone. Pearson correlation showed a significant and positive correlation of SOC stock with SOC, moisture (p < 0.01), and EC (p < 0.05), but had a negative correlation with bulk density, pH (p < 0.01), and sand (p < 0.05). DC apparently degraded soil quality and organic carbon reserves, thus reducing the soil health in mountain agriculture.\",\"PeriodicalId\":50287,\"journal\":{\"name\":\"International Journal of Sustainable Development and World Ecology\",\"volume\":\"32 1\",\"pages\":\"37 - 48\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2022-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Sustainable Development and World Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/13504509.2022.2116613\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sustainable Development and World Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/13504509.2022.2116613","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Crop intensification effects on soil quality and organic carbon stocks: a case study of Haramosh Valley in Central Karakorum, Pakistan
ABSTRACT Agricultural operations such as excessive tillage and intense cropping deplete soil organic carbon (SOC), making sustainable agriculture management critical for reducing greenhouse gas (GHG) emissions. This study evaluates the impact of crop intensification on soil quality and soil organic carbon stocks (SOCS) under double cropping (DC) and single cropping pattern (SC) in upper Haramosh of Gilgit, Pakistan. Soil samples were taken from cropping zones (DC and SC) under three depths (0–20, 20–40, and 40–60 cm). Standard methods were used to analyze selected soil quality parameters and SOC. Statistical analysis using ANOVA showed that soil temperature, moisture, pH, SOC, and SOCS highly significantly differed (p < 0.001) for different cropping patterns (DC and SC), whereas bulk density (BD), electrical conductivity (EC), and clay were not significantly different. The SC retained 4.4% more moisture and had lower BD than the DC, while BD increased with increasing depth. The texture of the soil was sandy loam at both cropping zones. The mean SOC and SOCS of SC were greater (by 12%) than in the DC zone. Pearson correlation showed a significant and positive correlation of SOC stock with SOC, moisture (p < 0.01), and EC (p < 0.05), but had a negative correlation with bulk density, pH (p < 0.01), and sand (p < 0.05). DC apparently degraded soil quality and organic carbon reserves, thus reducing the soil health in mountain agriculture.
期刊介绍:
The International Journal of Sustainable Development and World Ecology is now over fifteen years old and has proved to be an exciting forum for understanding and advancing our knowledge and implementation of sustainable development.
Sustainable development is now of primary importance as the key to future use and management of finite world resources. It recognises the need for development opportunities while maintaining a balance between these and the environment. As stated by the UN Bruntland Commission in 1987, sustainable development should "meet the needs of the present generation without compromising the ability of future generations to meet their own needs."