Naoki Sasaki, Hsiang-Ting Chen, Daisuke Sakamoto, T. Igarashi
{"title":"面元:具有自适应边界的面元,用于在虚拟环境中构建3D建筑模型","authors":"Naoki Sasaki, Hsiang-Ting Chen, Daisuke Sakamoto, T. Igarashi","doi":"10.1145/2503713.2503718","DOIUrl":null,"url":null,"abstract":"We present faceton, a geometric modeling primitive designed for building architectural models, using a six degrees of freedom (DoF) input device in a virtual environment (VE). A faceton is given as an oriented point floating in the air and defines a plane of infinite extent passing through the point. The polygonal mesh model is constructed by taking the intersection of the planes associated with the facetons. With the simple drag-and-drop and group interaction of faceton, users can easily create 3D architecture models in the VE. The faceton primitive and its interaction reduce the overhead associated with standard polygonal mesh modeling in VE, where users have to manually specify vertexes and edges which could be far away. The faceton representation is inspired by the research on boundary representations (B-rep) and constructive solid geometry (CSG), but it is driven by a novel adaptive bounding algorithm and is specifically designed for the 3D modeling activities in an immersive virtual environment.","PeriodicalId":93673,"journal":{"name":"Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM Symposium on Virtual Reality Software and Technology","volume":"10 1","pages":"77-82"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Facetons: face primitives with adaptive bounds for building 3D architectural models in virtual environment\",\"authors\":\"Naoki Sasaki, Hsiang-Ting Chen, Daisuke Sakamoto, T. Igarashi\",\"doi\":\"10.1145/2503713.2503718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present faceton, a geometric modeling primitive designed for building architectural models, using a six degrees of freedom (DoF) input device in a virtual environment (VE). A faceton is given as an oriented point floating in the air and defines a plane of infinite extent passing through the point. The polygonal mesh model is constructed by taking the intersection of the planes associated with the facetons. With the simple drag-and-drop and group interaction of faceton, users can easily create 3D architecture models in the VE. The faceton primitive and its interaction reduce the overhead associated with standard polygonal mesh modeling in VE, where users have to manually specify vertexes and edges which could be far away. The faceton representation is inspired by the research on boundary representations (B-rep) and constructive solid geometry (CSG), but it is driven by a novel adaptive bounding algorithm and is specifically designed for the 3D modeling activities in an immersive virtual environment.\",\"PeriodicalId\":93673,\"journal\":{\"name\":\"Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM Symposium on Virtual Reality Software and Technology\",\"volume\":\"10 1\",\"pages\":\"77-82\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM Symposium on Virtual Reality Software and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2503713.2503718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM Symposium on Virtual Reality Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2503713.2503718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Facetons: face primitives with adaptive bounds for building 3D architectural models in virtual environment
We present faceton, a geometric modeling primitive designed for building architectural models, using a six degrees of freedom (DoF) input device in a virtual environment (VE). A faceton is given as an oriented point floating in the air and defines a plane of infinite extent passing through the point. The polygonal mesh model is constructed by taking the intersection of the planes associated with the facetons. With the simple drag-and-drop and group interaction of faceton, users can easily create 3D architecture models in the VE. The faceton primitive and its interaction reduce the overhead associated with standard polygonal mesh modeling in VE, where users have to manually specify vertexes and edges which could be far away. The faceton representation is inspired by the research on boundary representations (B-rep) and constructive solid geometry (CSG), but it is driven by a novel adaptive bounding algorithm and is specifically designed for the 3D modeling activities in an immersive virtual environment.