Andrés Arias Londoño, W. González, Oscar Danilo Montoya Giraldo, J. Escobar
{"title":"基于Chu-Beasley遗传算法的多车辆段电动汽车路径问题的数学启发式方法","authors":"Andrés Arias Londoño, W. González, Oscar Danilo Montoya Giraldo, J. Escobar","doi":"10.5267/j.ijiec.2023.3.002","DOIUrl":null,"url":null,"abstract":"Operations with Electric Vehicles (EVs) on logistic companies and power utilities are increasingly related due to the charging stations representing the point of standard coupling between transportation and power networks. From this perspective, the Multi-depot Electric Vehicle Routing Problem (MDEVRP) is addressed in this research, considering a novel hybrid matheheuristic approach combining exact approaches and a Chu-Beasley Genetic Algorithm. An existing conflict is shown in three objectives handled through the experimentations: routing cost, cost of charging stations, and increased cost due to energy losses. EVs driving range is chosen as the parameter to perform the sensitivity analysis of the proposed MDEVRP. A 25-customer transportation network conforms to a newly designed test instance for methodology validation, spatially combined with a 33 nodes power distribution system.","PeriodicalId":51356,"journal":{"name":"International Journal of Industrial Engineering Computations","volume":"1 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A new matheheuristic approach based on Chu-Beasley genetic approach for the multi-depot electric vehicle routing problem\",\"authors\":\"Andrés Arias Londoño, W. González, Oscar Danilo Montoya Giraldo, J. Escobar\",\"doi\":\"10.5267/j.ijiec.2023.3.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Operations with Electric Vehicles (EVs) on logistic companies and power utilities are increasingly related due to the charging stations representing the point of standard coupling between transportation and power networks. From this perspective, the Multi-depot Electric Vehicle Routing Problem (MDEVRP) is addressed in this research, considering a novel hybrid matheheuristic approach combining exact approaches and a Chu-Beasley Genetic Algorithm. An existing conflict is shown in three objectives handled through the experimentations: routing cost, cost of charging stations, and increased cost due to energy losses. EVs driving range is chosen as the parameter to perform the sensitivity analysis of the proposed MDEVRP. A 25-customer transportation network conforms to a newly designed test instance for methodology validation, spatially combined with a 33 nodes power distribution system.\",\"PeriodicalId\":51356,\"journal\":{\"name\":\"International Journal of Industrial Engineering Computations\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Industrial Engineering Computations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5267/j.ijiec.2023.3.002\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Industrial Engineering Computations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5267/j.ijiec.2023.3.002","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
A new matheheuristic approach based on Chu-Beasley genetic approach for the multi-depot electric vehicle routing problem
Operations with Electric Vehicles (EVs) on logistic companies and power utilities are increasingly related due to the charging stations representing the point of standard coupling between transportation and power networks. From this perspective, the Multi-depot Electric Vehicle Routing Problem (MDEVRP) is addressed in this research, considering a novel hybrid matheheuristic approach combining exact approaches and a Chu-Beasley Genetic Algorithm. An existing conflict is shown in three objectives handled through the experimentations: routing cost, cost of charging stations, and increased cost due to energy losses. EVs driving range is chosen as the parameter to perform the sensitivity analysis of the proposed MDEVRP. A 25-customer transportation network conforms to a newly designed test instance for methodology validation, spatially combined with a 33 nodes power distribution system.