晶体半导体中准平稳过程的非线性模型

B. Juárez-Campos, E. Kaikina, H. Ruiz-Paredes
{"title":"晶体半导体中准平稳过程的非线性模型","authors":"B. Juárez-Campos, E. Kaikina, H. Ruiz-Paredes","doi":"10.7153/DEA-09-04","DOIUrl":null,"url":null,"abstract":"We consider the question of global existence and asymptotics of small, smooth, and localized solutions of a certain pseudoparabolic equation in one dimension, posed on half-line x > 0 , ⎪⎨ ⎪⎩ ( 1−∂ 2 x ) ut = ∂ 2 x (u+α2 (|u|2 u))+α1 |u|1 u, x ∈ R+, t > 0, u(0,x) = u0 (x) , x ∈ R+, u(0,t) = h(t), (0.1) where αi ∈ R,qi > 0, i = 1,2,u : Rx × R+ t ∈ C. This model is motivated by the a wave equation for media with a strong spatial dispersion, which appear in the nonlinear theory of the quasy-stationary processes in the electric media. We show that the problem (0.1) admits global solutions whose long-time behavior depend on boundary data. More precisely, we prove global existence and modified by boundary scattering of solutions. Mathematics subject classification (2010): 35Q35, 35B40.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"5 1","pages":"37-55"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nonlinear model of quasi-stationary process in crystalline semiconductor\",\"authors\":\"B. Juárez-Campos, E. Kaikina, H. Ruiz-Paredes\",\"doi\":\"10.7153/DEA-09-04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the question of global existence and asymptotics of small, smooth, and localized solutions of a certain pseudoparabolic equation in one dimension, posed on half-line x > 0 , ⎪⎨ ⎪⎩ ( 1−∂ 2 x ) ut = ∂ 2 x (u+α2 (|u|2 u))+α1 |u|1 u, x ∈ R+, t > 0, u(0,x) = u0 (x) , x ∈ R+, u(0,t) = h(t), (0.1) where αi ∈ R,qi > 0, i = 1,2,u : Rx × R+ t ∈ C. This model is motivated by the a wave equation for media with a strong spatial dispersion, which appear in the nonlinear theory of the quasy-stationary processes in the electric media. We show that the problem (0.1) admits global solutions whose long-time behavior depend on boundary data. More precisely, we prove global existence and modified by boundary scattering of solutions. Mathematics subject classification (2010): 35Q35, 35B40.\",\"PeriodicalId\":11162,\"journal\":{\"name\":\"Differential Equations and Applications\",\"volume\":\"5 1\",\"pages\":\"37-55\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/DEA-09-04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-09-04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑半直线x >,⎪⎪(1−∂2 x) ut =∂2 x (u+α2 (|u|2 u))+α1 |u|1 u, x∈R+, t > 0, u(0,x) = u0 (x),x∈R+, u(0,t) = h(t),(0.1)其中αi∈R,qi > 0, i = 1,2,u:Rx × R+ t∈c,该模型是由电介质中准平稳过程非线性理论中出现的具有强空间色散的介质的波动方程驱动的。我们证明了问题(0.1)允许其长期行为依赖于边界数据的全局解。更准确地说,我们证明了解的整体存在性,并通过边界散射修正了它。数学学科分类(2010):35Q35, 35B40。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear model of quasi-stationary process in crystalline semiconductor
We consider the question of global existence and asymptotics of small, smooth, and localized solutions of a certain pseudoparabolic equation in one dimension, posed on half-line x > 0 , ⎪⎨ ⎪⎩ ( 1−∂ 2 x ) ut = ∂ 2 x (u+α2 (|u|2 u))+α1 |u|1 u, x ∈ R+, t > 0, u(0,x) = u0 (x) , x ∈ R+, u(0,t) = h(t), (0.1) where αi ∈ R,qi > 0, i = 1,2,u : Rx × R+ t ∈ C. This model is motivated by the a wave equation for media with a strong spatial dispersion, which appear in the nonlinear theory of the quasy-stationary processes in the electric media. We show that the problem (0.1) admits global solutions whose long-time behavior depend on boundary data. More precisely, we prove global existence and modified by boundary scattering of solutions. Mathematics subject classification (2010): 35Q35, 35B40.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信