D. Kallepalli, Alan T. K. Godfrey, Jesse Ratté, A. Staudte, Chunmei Zhang, P. Corkum
{"title":"背照超快激光处理聚合物的表面附着力","authors":"D. Kallepalli, Alan T. K. Godfrey, Jesse Ratté, A. Staudte, Chunmei Zhang, P. Corkum","doi":"10.1103/PhysRevMaterials.5.045201","DOIUrl":null,"url":null,"abstract":"We report a decreased surface wettability when polymer films on a glass substrate are treated by ultra-fast laser pulses in a back-illumination geometry. We propose that back-illumination through the substrate confines chemical changes beneath the surface of polymer films, leaving the surface blistered but chemically intact. To confirm this hypothesis, we measure the phase contrast of the polymer when observed with a focused ion beam. We observe a void at the polymer-quartz interface that results from the expansion of an ultrafast laser-induced plasma. A modified polymer layer surrounds the void, but otherwise the film seems unmodified. We also use X-ray photoelectron spectroscopy to confirm that there is no chemical change to the surface. When patterned with partially overlapping blisters, our polymer surface shows increased hydrophobicity. The increased hydrophobicity of back-illuminated surfaces can only result from the morphological change. This contrasts with the combined chemical and morphological changes of the polymer surface caused by a front-illumination geometry.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":"249 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface adhesion of back-illuminated ultrafast laser-treated polymers\",\"authors\":\"D. Kallepalli, Alan T. K. Godfrey, Jesse Ratté, A. Staudte, Chunmei Zhang, P. Corkum\",\"doi\":\"10.1103/PhysRevMaterials.5.045201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report a decreased surface wettability when polymer films on a glass substrate are treated by ultra-fast laser pulses in a back-illumination geometry. We propose that back-illumination through the substrate confines chemical changes beneath the surface of polymer films, leaving the surface blistered but chemically intact. To confirm this hypothesis, we measure the phase contrast of the polymer when observed with a focused ion beam. We observe a void at the polymer-quartz interface that results from the expansion of an ultrafast laser-induced plasma. A modified polymer layer surrounds the void, but otherwise the film seems unmodified. We also use X-ray photoelectron spectroscopy to confirm that there is no chemical change to the surface. When patterned with partially overlapping blisters, our polymer surface shows increased hydrophobicity. The increased hydrophobicity of back-illuminated surfaces can only result from the morphological change. This contrasts with the combined chemical and morphological changes of the polymer surface caused by a front-illumination geometry.\",\"PeriodicalId\":8423,\"journal\":{\"name\":\"arXiv: Applied Physics\",\"volume\":\"249 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevMaterials.5.045201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevMaterials.5.045201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Surface adhesion of back-illuminated ultrafast laser-treated polymers
We report a decreased surface wettability when polymer films on a glass substrate are treated by ultra-fast laser pulses in a back-illumination geometry. We propose that back-illumination through the substrate confines chemical changes beneath the surface of polymer films, leaving the surface blistered but chemically intact. To confirm this hypothesis, we measure the phase contrast of the polymer when observed with a focused ion beam. We observe a void at the polymer-quartz interface that results from the expansion of an ultrafast laser-induced plasma. A modified polymer layer surrounds the void, but otherwise the film seems unmodified. We also use X-ray photoelectron spectroscopy to confirm that there is no chemical change to the surface. When patterned with partially overlapping blisters, our polymer surface shows increased hydrophobicity. The increased hydrophobicity of back-illuminated surfaces can only result from the morphological change. This contrasts with the combined chemical and morphological changes of the polymer surface caused by a front-illumination geometry.