基于胶囊网络自注意路由的方面级情感分类

Chang Liu, Jianxia Chen, Tianci Wang, Qi Liu, Xinyun Wu, Lei Mao
{"title":"基于胶囊网络自注意路由的方面级情感分类","authors":"Chang Liu, Jianxia Chen, Tianci Wang, Qi Liu, Xinyun Wu, Lei Mao","doi":"10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00280","DOIUrl":null,"url":null,"abstract":"Aspect-level sentiment classification task aims at determining the sentiment polarity towards each aspect in a sentence. Although existing models have achieved remarkable performance, they always ignore the semantic relationship between aspects and their context, resulting in the lack of syntax information and aspect features. Therefore, the paper proposes a novel model named ASC based on the Self-Attention routing combined with the Position-biased weight approach, ASC-SAP in short. First, the paper utilizes the position-biased weight approach to construct an aspect-enhanced embedding. Furthermore, the paper develops a novel non-iterative but highly parallelized self-attention routing mechanism to efficiently transfer the aspect features to the target capsules. In addition, the paper utilizes pre-trained model bidirectional encoder representation from transformers (BERT). Comprehensive experiments show that our model achieves excellent performance on Twitter and SemEval2014 benchmarks and verify the effectiveness of our models.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aspect-Level Sentiment Classification Based on Self-Attention Routing via Capsule Network\",\"authors\":\"Chang Liu, Jianxia Chen, Tianci Wang, Qi Liu, Xinyun Wu, Lei Mao\",\"doi\":\"10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aspect-level sentiment classification task aims at determining the sentiment polarity towards each aspect in a sentence. Although existing models have achieved remarkable performance, they always ignore the semantic relationship between aspects and their context, resulting in the lack of syntax information and aspect features. Therefore, the paper proposes a novel model named ASC based on the Self-Attention routing combined with the Position-biased weight approach, ASC-SAP in short. First, the paper utilizes the position-biased weight approach to construct an aspect-enhanced embedding. Furthermore, the paper develops a novel non-iterative but highly parallelized self-attention routing mechanism to efficiently transfer the aspect features to the target capsules. In addition, the paper utilizes pre-trained model bidirectional encoder representation from transformers (BERT). Comprehensive experiments show that our model achieves excellent performance on Twitter and SemEval2014 benchmarks and verify the effectiveness of our models.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

方面级情感分类任务旨在确定句子中每个方面的情感极性。虽然现有的模型已经取得了显著的成绩,但它们往往忽略了方面及其上下文之间的语义关系,导致缺乏语法信息和方面特征。因此,本文提出了一种基于自注意路由与位置偏权方法相结合的新模型ASC,简称ASC- sap。首先,本文利用位置偏权方法构建了一个方面增强的嵌入。在此基础上,提出了一种新的非迭代但高度并行的自关注路由机制,以有效地将方面特征传递给目标胶囊。此外,本文利用预训练模型双向编码器表示从变压器(BERT)。综合实验表明,我们的模型在Twitter和SemEval2014基准上取得了优异的性能,验证了我们模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Aspect-Level Sentiment Classification Based on Self-Attention Routing via Capsule Network
Aspect-level sentiment classification task aims at determining the sentiment polarity towards each aspect in a sentence. Although existing models have achieved remarkable performance, they always ignore the semantic relationship between aspects and their context, resulting in the lack of syntax information and aspect features. Therefore, the paper proposes a novel model named ASC based on the Self-Attention routing combined with the Position-biased weight approach, ASC-SAP in short. First, the paper utilizes the position-biased weight approach to construct an aspect-enhanced embedding. Furthermore, the paper develops a novel non-iterative but highly parallelized self-attention routing mechanism to efficiently transfer the aspect features to the target capsules. In addition, the paper utilizes pre-trained model bidirectional encoder representation from transformers (BERT). Comprehensive experiments show that our model achieves excellent performance on Twitter and SemEval2014 benchmarks and verify the effectiveness of our models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信