{"title":"DFT + DMFT在材料科学中的应用","authors":"A. Paul, T. Birol","doi":"10.1146/annurev-matsci-070218-121825","DOIUrl":null,"url":null,"abstract":"First-principles methods can provide insight into materials that is otherwise impossible to acquire. Density functional theory (DFT) has been the first-principles method of choice for numerous applications, but it falls short of predicting the properties of correlated materials. First-principles DFT + dynamical mean field theory (DMFT) is a powerful tool that can address these shortcomings of DFT when applied to correlated metals. In this brief review, which is aimed at nonexperts, we review the basics and some applications of DFT + DMFT.","PeriodicalId":8055,"journal":{"name":"Annual Review of Materials Research","volume":"2015 1","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Applications of DFT + DMFT in Materials Science\",\"authors\":\"A. Paul, T. Birol\",\"doi\":\"10.1146/annurev-matsci-070218-121825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"First-principles methods can provide insight into materials that is otherwise impossible to acquire. Density functional theory (DFT) has been the first-principles method of choice for numerous applications, but it falls short of predicting the properties of correlated materials. First-principles DFT + dynamical mean field theory (DMFT) is a powerful tool that can address these shortcomings of DFT when applied to correlated metals. In this brief review, which is aimed at nonexperts, we review the basics and some applications of DFT + DMFT.\",\"PeriodicalId\":8055,\"journal\":{\"name\":\"Annual Review of Materials Research\",\"volume\":\"2015 1\",\"pages\":\"\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2018-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-matsci-070218-121825\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1146/annurev-matsci-070218-121825","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
First-principles methods can provide insight into materials that is otherwise impossible to acquire. Density functional theory (DFT) has been the first-principles method of choice for numerous applications, but it falls short of predicting the properties of correlated materials. First-principles DFT + dynamical mean field theory (DMFT) is a powerful tool that can address these shortcomings of DFT when applied to correlated metals. In this brief review, which is aimed at nonexperts, we review the basics and some applications of DFT + DMFT.
期刊介绍:
The Annual Review of Materials Research, published since 1971, is a journal that covers significant developments in the field of materials research. It includes original methodologies, materials phenomena, material systems, and special keynote topics. The current volume of the journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The journal defines its scope as encompassing significant developments in materials science, including methodologies for studying materials and materials phenomena. It is indexed and abstracted in various databases, such as Scopus, Science Citation Index Expanded, Civil Engineering Abstracts, INSPEC, and Academic Search, among others.