从冲突敏感磷酸化动力学中学习条件依赖的动态PPI网络

Qiong Cheng, M. Ogihara, Vineet K Gupta
{"title":"从冲突敏感磷酸化动力学中学习条件依赖的动态PPI网络","authors":"Qiong Cheng, M. Ogihara, Vineet K Gupta","doi":"10.1109/BIBM.2011.127","DOIUrl":null,"url":null,"abstract":"An important issue in protein-protein interaction network studies is the identification of interaction dynamics. Two factors contribute to the dynamics. One, not all proteins may be expressed in a given cell, and two, competition may exist among multiple proteins for a particular protein domain. Taking into account these two factors, we propose a novel approach to predict protein-protein interaction network dynamics by learning from conflict-sensitive phosphorylation dynamics. We built a training model from conflict-sensitive phosphorylation dynamics. In this model, each node is not an individual protein but a protein-protein pair and is labeled with terms representing conditions in which the interaction should be observed. We mapped the protein pairs in a vector space, built hyper-edges over the interaction nodes, and developed rank-like SVM with Laplacian regularizers for PPI network dynamics prediction. We also employed the standard F1 measure for evaluating the effectiveness of classification results.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"48 1","pages":"309-312"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Condition-Dependent Dynamical PPI Networks from Conflict-Sensitive Phosphorylation Dynamics\",\"authors\":\"Qiong Cheng, M. Ogihara, Vineet K Gupta\",\"doi\":\"10.1109/BIBM.2011.127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important issue in protein-protein interaction network studies is the identification of interaction dynamics. Two factors contribute to the dynamics. One, not all proteins may be expressed in a given cell, and two, competition may exist among multiple proteins for a particular protein domain. Taking into account these two factors, we propose a novel approach to predict protein-protein interaction network dynamics by learning from conflict-sensitive phosphorylation dynamics. We built a training model from conflict-sensitive phosphorylation dynamics. In this model, each node is not an individual protein but a protein-protein pair and is labeled with terms representing conditions in which the interaction should be observed. We mapped the protein pairs in a vector space, built hyper-edges over the interaction nodes, and developed rank-like SVM with Laplacian regularizers for PPI network dynamics prediction. We also employed the standard F1 measure for evaluating the effectiveness of classification results.\",\"PeriodicalId\":6345,\"journal\":{\"name\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"volume\":\"48 1\",\"pages\":\"309-312\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2011.127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2011.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质-蛋白质相互作用网络研究中的一个重要问题是相互作用动力学的识别。有两个因素促成了这种动态。首先,不是所有的蛋白质都可以在一个给定的细胞中表达,其次,多个蛋白质之间可能存在竞争,以争夺一个特定的蛋白质结构域。考虑到这两个因素,我们提出了一种通过学习冲突敏感磷酸化动力学来预测蛋白质-蛋白质相互作用网络动力学的新方法。我们根据冲突敏感性磷酸化动力学建立了一个训练模型。在这个模型中,每个节点不是一个单独的蛋白质,而是一个蛋白质-蛋白质对,并用表示相互作用应该被观察到的条件的术语来标记。我们将蛋白质对映射到向量空间中,在交互节点上构建超边缘,并使用拉普拉斯正则化器开发了类秩支持向量机,用于PPI网络动态预测。我们还采用标准的F1测度来评价分类结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Condition-Dependent Dynamical PPI Networks from Conflict-Sensitive Phosphorylation Dynamics
An important issue in protein-protein interaction network studies is the identification of interaction dynamics. Two factors contribute to the dynamics. One, not all proteins may be expressed in a given cell, and two, competition may exist among multiple proteins for a particular protein domain. Taking into account these two factors, we propose a novel approach to predict protein-protein interaction network dynamics by learning from conflict-sensitive phosphorylation dynamics. We built a training model from conflict-sensitive phosphorylation dynamics. In this model, each node is not an individual protein but a protein-protein pair and is labeled with terms representing conditions in which the interaction should be observed. We mapped the protein pairs in a vector space, built hyper-edges over the interaction nodes, and developed rank-like SVM with Laplacian regularizers for PPI network dynamics prediction. We also employed the standard F1 measure for evaluating the effectiveness of classification results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信