t-扩散理想的射影维数和Castelnuovo-Mumford正则性

Luca Amata, M. Crupi, A. Ficarra
{"title":"t-扩散理想的射影维数和Castelnuovo-Mumford正则性","authors":"Luca Amata, M. Crupi, A. Ficarra","doi":"10.1142/s0218196722500357","DOIUrl":null,"url":null,"abstract":"In this paper, we study some algebraic invariants of [Formula: see text]-spread ideals, [Formula: see text], such as the projective dimension and the Castelnuovo–Mumford regularity, by means of well-known graded resolutions. We state upper bounds for these invariants and, furthermore, we identify a special class of [Formula: see text]-spread ideals for which such bounds are optimal.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"102 1","pages":"837-858"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Projective dimension and Castelnuovo-Mumford regularity of t-spread ideals\",\"authors\":\"Luca Amata, M. Crupi, A. Ficarra\",\"doi\":\"10.1142/s0218196722500357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study some algebraic invariants of [Formula: see text]-spread ideals, [Formula: see text], such as the projective dimension and the Castelnuovo–Mumford regularity, by means of well-known graded resolutions. We state upper bounds for these invariants and, furthermore, we identify a special class of [Formula: see text]-spread ideals for which such bounds are optimal.\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"102 1\",\"pages\":\"837-858\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196722500357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196722500357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文利用著名的分级分解方法,研究了[公式:见文]-扩散理想,[公式:见文]的一些代数不变量,如射影维数和Castelnuovo-Mumford正则。我们给出了这些不变量的上界,进一步,我们确定了一类特殊的[公式:见文本]-扩展理想,对于这些理想,上界是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Projective dimension and Castelnuovo-Mumford regularity of t-spread ideals
In this paper, we study some algebraic invariants of [Formula: see text]-spread ideals, [Formula: see text], such as the projective dimension and the Castelnuovo–Mumford regularity, by means of well-known graded resolutions. We state upper bounds for these invariants and, furthermore, we identify a special class of [Formula: see text]-spread ideals for which such bounds are optimal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信