全象限高性能电静压非对称作动器的优化驱动控制器设计

IF 1.3 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Kurram Butt, G. Costa, N. Sepehri
{"title":"全象限高性能电静压非对称作动器的优化驱动控制器设计","authors":"Kurram Butt, G. Costa, N. Sepehri","doi":"10.1115/1.4050722","DOIUrl":null,"url":null,"abstract":"\n This paper presents an optimization-driven controller design for smooth and accurate position control of a single-rod electrohydrostatic actuator. The design approach uses logically guided iterative runs of the electrohydrostatic actuator to determine the optimal gain and poles' locations of a low-bandwidth controller. The optimization algorithm used in the paper is the globalized bounded Nelder–Mead algorithm with deterministic restarts for improved globalization and lower numerical cost. The design also incorporates a prefilter to ensure minimum jerk in the system's step input response in the beginning and while approaching steady-state. The step response of the filter is a seventh-deg polynomial curve that ensures the minimum change in acceleration in both states. Experimental results reveal that the addition of the proposed prefilter reduces jerk in the system by up to 90%. Results also indicate that the controller performs very well in all quadrants with external load uncertainty of up to 367 kg and thus proves the effectiveness of the design approach.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"31 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization-Driven Controller Design for a High-Performance Electro-Hydrostatic Asymmetric Actuator Operating in All Quadrants\",\"authors\":\"Kurram Butt, G. Costa, N. Sepehri\",\"doi\":\"10.1115/1.4050722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper presents an optimization-driven controller design for smooth and accurate position control of a single-rod electrohydrostatic actuator. The design approach uses logically guided iterative runs of the electrohydrostatic actuator to determine the optimal gain and poles' locations of a low-bandwidth controller. The optimization algorithm used in the paper is the globalized bounded Nelder–Mead algorithm with deterministic restarts for improved globalization and lower numerical cost. The design also incorporates a prefilter to ensure minimum jerk in the system's step input response in the beginning and while approaching steady-state. The step response of the filter is a seventh-deg polynomial curve that ensures the minimum change in acceleration in both states. Experimental results reveal that the addition of the proposed prefilter reduces jerk in the system by up to 90%. Results also indicate that the controller performs very well in all quadrants with external load uncertainty of up to 367 kg and thus proves the effectiveness of the design approach.\",\"PeriodicalId\":54846,\"journal\":{\"name\":\"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4050722\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4050722","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

为实现单杆电静液作动器的平稳、精确的位置控制,提出了一种优化驱动的控制器设计。设计方法采用逻辑引导的电静压执行器迭代运行来确定低带宽控制器的最佳增益和极点位置。本文所采用的优化算法是全球化的有界Nelder-Mead算法,具有确定性重启,提高了全球化,降低了数值代价。该设计还集成了一个预滤波器,以确保系统的阶跃输入响应在开始时和接近稳态时最小的抖动。滤波器的阶跃响应是一个7度多项式曲线,保证了两种状态下加速度的最小变化。实验结果表明,该预滤波器的加入使系统的抖动减少了90%。结果还表明,控制器在外部负载不确定性高达367 kg的所有象限中都表现良好,从而证明了设计方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization-Driven Controller Design for a High-Performance Electro-Hydrostatic Asymmetric Actuator Operating in All Quadrants
This paper presents an optimization-driven controller design for smooth and accurate position control of a single-rod electrohydrostatic actuator. The design approach uses logically guided iterative runs of the electrohydrostatic actuator to determine the optimal gain and poles' locations of a low-bandwidth controller. The optimization algorithm used in the paper is the globalized bounded Nelder–Mead algorithm with deterministic restarts for improved globalization and lower numerical cost. The design also incorporates a prefilter to ensure minimum jerk in the system's step input response in the beginning and while approaching steady-state. The step response of the filter is a seventh-deg polynomial curve that ensures the minimum change in acceleration in both states. Experimental results reveal that the addition of the proposed prefilter reduces jerk in the system by up to 90%. Results also indicate that the controller performs very well in all quadrants with external load uncertainty of up to 367 kg and thus proves the effectiveness of the design approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
11.80%
发文量
79
审稿时长
24.0 months
期刊介绍: The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信