节点和构建方向对L-PBF Ti6Al4V晶格结构亚单元元件疲劳行为的影响

Simone Murchio, Michele Dallago, Andrea Rigatti, Valerio Luchin, Filippo. Berto, Devid Maniglio, Matteo Benedetti
{"title":"节点和构建方向对L-PBF Ti6Al4V晶格结构亚单元元件疲劳行为的影响","authors":"Simone Murchio,&nbsp;Michele Dallago,&nbsp;Andrea Rigatti,&nbsp;Valerio Luchin,&nbsp;Filippo. Berto,&nbsp;Devid Maniglio,&nbsp;Matteo Benedetti","doi":"10.1002/mdp2.258","DOIUrl":null,"url":null,"abstract":"<p>Despite the great potential of additively manufactured (AM) metallic lattice materials, a comprehensive understanding of their mechanical behavior, particularly fatigue, has yet to be achieved. The role of the sub-unital lattice elements, that is, the struts and the nodes (or strut junctions), is rarely explored, even though it is well known that fatigue is a local phenomenon, determined by the small features of a structure (defects and local geometrical discontinuities).</p><p>In this work, the mechanical behavior of nodes and struts has been investigated by designing laser powder bed fusion (L-PBF) Ti6Al4V single strut specimens, with a node placed in the central part of the gauge length. The specimens were manufactured according to four different building orientations, namely, 90°, 45°, 15°, and 0° to the build plane. The influence of the fillet radius at the node and of the printing direction on the fatigue strength has been examined.</p>","PeriodicalId":100886,"journal":{"name":"Material Design & Processing Communications","volume":"3 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mdp2.258","citationCount":"6","resultStr":"{\"title\":\"On the effect of the node and building orientation on the fatigue behavior of L-PBF Ti6Al4V lattice structure sub-unital elements\",\"authors\":\"Simone Murchio,&nbsp;Michele Dallago,&nbsp;Andrea Rigatti,&nbsp;Valerio Luchin,&nbsp;Filippo. Berto,&nbsp;Devid Maniglio,&nbsp;Matteo Benedetti\",\"doi\":\"10.1002/mdp2.258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite the great potential of additively manufactured (AM) metallic lattice materials, a comprehensive understanding of their mechanical behavior, particularly fatigue, has yet to be achieved. The role of the sub-unital lattice elements, that is, the struts and the nodes (or strut junctions), is rarely explored, even though it is well known that fatigue is a local phenomenon, determined by the small features of a structure (defects and local geometrical discontinuities).</p><p>In this work, the mechanical behavior of nodes and struts has been investigated by designing laser powder bed fusion (L-PBF) Ti6Al4V single strut specimens, with a node placed in the central part of the gauge length. The specimens were manufactured according to four different building orientations, namely, 90°, 45°, 15°, and 0° to the build plane. The influence of the fillet radius at the node and of the printing direction on the fatigue strength has been examined.</p>\",\"PeriodicalId\":100886,\"journal\":{\"name\":\"Material Design & Processing Communications\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mdp2.258\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Material Design & Processing Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mdp2.258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Design & Processing Communications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mdp2.258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

尽管增材制造(AM)金属晶格材料具有巨大的潜力,但对其力学行为,特别是疲劳性能的全面了解尚未实现。尽管众所周知,疲劳是一种局部现象,由结构的小特征(缺陷和局部几何不连续)决定,但很少探索亚单元晶格元素,即杆和节点(或杆结点)的作用。在本工作中,通过设计激光粉末床熔合(L-PBF) Ti6Al4V单支柱试件,在规范长度的中心位置放置一个节点,研究了节点和支柱的力学行为。试件按与建筑平面90°、45°、15°、0°四种不同的建筑方位制作。研究了节点圆角半径和打印方向对疲劳强度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the effect of the node and building orientation on the fatigue behavior of L-PBF Ti6Al4V lattice structure sub-unital elements

On the effect of the node and building orientation on the fatigue behavior of L-PBF Ti6Al4V lattice structure sub-unital elements

Despite the great potential of additively manufactured (AM) metallic lattice materials, a comprehensive understanding of their mechanical behavior, particularly fatigue, has yet to be achieved. The role of the sub-unital lattice elements, that is, the struts and the nodes (or strut junctions), is rarely explored, even though it is well known that fatigue is a local phenomenon, determined by the small features of a structure (defects and local geometrical discontinuities).

In this work, the mechanical behavior of nodes and struts has been investigated by designing laser powder bed fusion (L-PBF) Ti6Al4V single strut specimens, with a node placed in the central part of the gauge length. The specimens were manufactured according to four different building orientations, namely, 90°, 45°, 15°, and 0° to the build plane. The influence of the fillet radius at the node and of the printing direction on the fatigue strength has been examined.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信