{"title":"节点和构建方向对L-PBF Ti6Al4V晶格结构亚单元元件疲劳行为的影响","authors":"Simone Murchio, Michele Dallago, Andrea Rigatti, Valerio Luchin, Filippo. Berto, Devid Maniglio, Matteo Benedetti","doi":"10.1002/mdp2.258","DOIUrl":null,"url":null,"abstract":"<p>Despite the great potential of additively manufactured (AM) metallic lattice materials, a comprehensive understanding of their mechanical behavior, particularly fatigue, has yet to be achieved. The role of the sub-unital lattice elements, that is, the struts and the nodes (or strut junctions), is rarely explored, even though it is well known that fatigue is a local phenomenon, determined by the small features of a structure (defects and local geometrical discontinuities).</p><p>In this work, the mechanical behavior of nodes and struts has been investigated by designing laser powder bed fusion (L-PBF) Ti6Al4V single strut specimens, with a node placed in the central part of the gauge length. The specimens were manufactured according to four different building orientations, namely, 90°, 45°, 15°, and 0° to the build plane. The influence of the fillet radius at the node and of the printing direction on the fatigue strength has been examined.</p>","PeriodicalId":100886,"journal":{"name":"Material Design & Processing Communications","volume":"3 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mdp2.258","citationCount":"6","resultStr":"{\"title\":\"On the effect of the node and building orientation on the fatigue behavior of L-PBF Ti6Al4V lattice structure sub-unital elements\",\"authors\":\"Simone Murchio, Michele Dallago, Andrea Rigatti, Valerio Luchin, Filippo. Berto, Devid Maniglio, Matteo Benedetti\",\"doi\":\"10.1002/mdp2.258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite the great potential of additively manufactured (AM) metallic lattice materials, a comprehensive understanding of their mechanical behavior, particularly fatigue, has yet to be achieved. The role of the sub-unital lattice elements, that is, the struts and the nodes (or strut junctions), is rarely explored, even though it is well known that fatigue is a local phenomenon, determined by the small features of a structure (defects and local geometrical discontinuities).</p><p>In this work, the mechanical behavior of nodes and struts has been investigated by designing laser powder bed fusion (L-PBF) Ti6Al4V single strut specimens, with a node placed in the central part of the gauge length. The specimens were manufactured according to four different building orientations, namely, 90°, 45°, 15°, and 0° to the build plane. The influence of the fillet radius at the node and of the printing direction on the fatigue strength has been examined.</p>\",\"PeriodicalId\":100886,\"journal\":{\"name\":\"Material Design & Processing Communications\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mdp2.258\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Material Design & Processing Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mdp2.258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Design & Processing Communications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mdp2.258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the effect of the node and building orientation on the fatigue behavior of L-PBF Ti6Al4V lattice structure sub-unital elements
Despite the great potential of additively manufactured (AM) metallic lattice materials, a comprehensive understanding of their mechanical behavior, particularly fatigue, has yet to be achieved. The role of the sub-unital lattice elements, that is, the struts and the nodes (or strut junctions), is rarely explored, even though it is well known that fatigue is a local phenomenon, determined by the small features of a structure (defects and local geometrical discontinuities).
In this work, the mechanical behavior of nodes and struts has been investigated by designing laser powder bed fusion (L-PBF) Ti6Al4V single strut specimens, with a node placed in the central part of the gauge length. The specimens were manufactured according to four different building orientations, namely, 90°, 45°, 15°, and 0° to the build plane. The influence of the fillet radius at the node and of the printing direction on the fatigue strength has been examined.