用混合数据抽样的分数驱动动态模型预测经济时间序列

P. Gorgi, S. J. Koopman, Mengheng Li
{"title":"用混合数据抽样的分数驱动动态模型预测经济时间序列","authors":"P. Gorgi, S. J. Koopman, Mengheng Li","doi":"10.2139/ssrn.3145072","DOIUrl":null,"url":null,"abstract":"Abstract We introduce a mixed-frequency score-driven dynamic model for multiple time series where the score contributions from high-frequency variables are transformed by means of a mixed-data sampling weighting scheme. The resulting dynamic model delivers a flexible and easy-to-implement framework for the forecasting of low-frequency time series variables through the use of timely information from high-frequency variables. We verify the in-sample and out-of-sample performances of the model in an empirical study on the forecasting of U.S. headline inflation and GDP growth. In particular, we forecast monthly headline inflation using daily oil prices and quarterly GDP growth using a measure of financial risk. The forecasting results and other findings are promising. Our proposed score-driven dynamic model with mixed-data sampling weighting outperforms competing models in terms of both point and density forecasts.","PeriodicalId":11495,"journal":{"name":"Econometric Modeling: Capital Markets - Forecasting eJournal","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Forecasting Economic Time Series Using Score-Driven Dynamic Models with Mixed-Data Sampling\",\"authors\":\"P. Gorgi, S. J. Koopman, Mengheng Li\",\"doi\":\"10.2139/ssrn.3145072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We introduce a mixed-frequency score-driven dynamic model for multiple time series where the score contributions from high-frequency variables are transformed by means of a mixed-data sampling weighting scheme. The resulting dynamic model delivers a flexible and easy-to-implement framework for the forecasting of low-frequency time series variables through the use of timely information from high-frequency variables. We verify the in-sample and out-of-sample performances of the model in an empirical study on the forecasting of U.S. headline inflation and GDP growth. In particular, we forecast monthly headline inflation using daily oil prices and quarterly GDP growth using a measure of financial risk. The forecasting results and other findings are promising. Our proposed score-driven dynamic model with mixed-data sampling weighting outperforms competing models in terms of both point and density forecasts.\",\"PeriodicalId\":11495,\"journal\":{\"name\":\"Econometric Modeling: Capital Markets - Forecasting eJournal\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Capital Markets - Forecasting eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3145072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Forecasting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3145072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

摘要提出了一种混合频率分数驱动的多时间序列动态模型,该模型采用混合数据采样加权方法对高频变量的分数贡献进行变换。由此产生的动态模型通过使用高频变量的及时信息,为低频时间序列变量的预测提供了一个灵活且易于实现的框架。我们在对美国总体通货膨胀和GDP增长预测的实证研究中验证了该模型的样本内和样本外表现。特别是,我们使用每日油价来预测月度总体通胀,使用金融风险来预测季度GDP增长。预测结果和其他发现是有希望的。我们提出的分数驱动的混合数据采样加权动态模型在点和密度预测方面都优于竞争模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting Economic Time Series Using Score-Driven Dynamic Models with Mixed-Data Sampling
Abstract We introduce a mixed-frequency score-driven dynamic model for multiple time series where the score contributions from high-frequency variables are transformed by means of a mixed-data sampling weighting scheme. The resulting dynamic model delivers a flexible and easy-to-implement framework for the forecasting of low-frequency time series variables through the use of timely information from high-frequency variables. We verify the in-sample and out-of-sample performances of the model in an empirical study on the forecasting of U.S. headline inflation and GDP growth. In particular, we forecast monthly headline inflation using daily oil prices and quarterly GDP growth using a measure of financial risk. The forecasting results and other findings are promising. Our proposed score-driven dynamic model with mixed-data sampling weighting outperforms competing models in terms of both point and density forecasts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信