{"title":"CaO/Ca(OH)2化学热泵系统的动态模拟","authors":"S. Fujimoto , E. Bilgen , H. Ogura","doi":"10.1016/S1164-0235(01)00035-8","DOIUrl":null,"url":null,"abstract":"<div><p>Using energy and exergy analyses, a dynamic simulation is carried out with a CaO/Ca(OH)<sub>2</sub> chemical heat pump system for heating and cooling applications. The system consists of hydration/dehydration reactor connected to condenser/evaporator with a control valve in between. During the dehydration process, heat is supplied at 700 K for dehydration of Ca(OH)<sub>2</sub> and steam is condensed at 293 K. During evaporation/hydration process, heat is supplied at 290 K for evaporation of water at 273 K and heat of hydration is supplied to a load at 353 K. Duration of one cycle takes about 12 hours. Two subsystems are used to provide for heating/cooling demands in a continuous manner. Using synthetic demands of a residential dwelling, various performance parameters have been calculated for a 24 hour period. The results showed that CaO/Ca(OH)<sub>2</sub> chemical heat pump system could satisfy heating and cooling demands of a typical dwelling. Its energy and exergy efficiencies were 58.7% and 61.6% for heating and 12.7% and 4.5% for cooling respectively.</p></div>","PeriodicalId":100518,"journal":{"name":"Exergy, An International Journal","volume":"2 1","pages":"Pages 6-14"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1164-0235(01)00035-8","citationCount":"27","resultStr":"{\"title\":\"Dynamic simulation of CaO/Ca(OH)2 chemical heat pump systems\",\"authors\":\"S. Fujimoto , E. Bilgen , H. Ogura\",\"doi\":\"10.1016/S1164-0235(01)00035-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using energy and exergy analyses, a dynamic simulation is carried out with a CaO/Ca(OH)<sub>2</sub> chemical heat pump system for heating and cooling applications. The system consists of hydration/dehydration reactor connected to condenser/evaporator with a control valve in between. During the dehydration process, heat is supplied at 700 K for dehydration of Ca(OH)<sub>2</sub> and steam is condensed at 293 K. During evaporation/hydration process, heat is supplied at 290 K for evaporation of water at 273 K and heat of hydration is supplied to a load at 353 K. Duration of one cycle takes about 12 hours. Two subsystems are used to provide for heating/cooling demands in a continuous manner. Using synthetic demands of a residential dwelling, various performance parameters have been calculated for a 24 hour period. The results showed that CaO/Ca(OH)<sub>2</sub> chemical heat pump system could satisfy heating and cooling demands of a typical dwelling. Its energy and exergy efficiencies were 58.7% and 61.6% for heating and 12.7% and 4.5% for cooling respectively.</p></div>\",\"PeriodicalId\":100518,\"journal\":{\"name\":\"Exergy, An International Journal\",\"volume\":\"2 1\",\"pages\":\"Pages 6-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1164-0235(01)00035-8\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Exergy, An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1164023501000358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exergy, An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1164023501000358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic simulation of CaO/Ca(OH)2 chemical heat pump systems
Using energy and exergy analyses, a dynamic simulation is carried out with a CaO/Ca(OH)2 chemical heat pump system for heating and cooling applications. The system consists of hydration/dehydration reactor connected to condenser/evaporator with a control valve in between. During the dehydration process, heat is supplied at 700 K for dehydration of Ca(OH)2 and steam is condensed at 293 K. During evaporation/hydration process, heat is supplied at 290 K for evaporation of water at 273 K and heat of hydration is supplied to a load at 353 K. Duration of one cycle takes about 12 hours. Two subsystems are used to provide for heating/cooling demands in a continuous manner. Using synthetic demands of a residential dwelling, various performance parameters have been calculated for a 24 hour period. The results showed that CaO/Ca(OH)2 chemical heat pump system could satisfy heating and cooling demands of a typical dwelling. Its energy and exergy efficiencies were 58.7% and 61.6% for heating and 12.7% and 4.5% for cooling respectively.