{"title":"热膨胀失配和纤维涂层对陶瓷基复合材料纤维/基体界面剪应力的影响","authors":"M. Brun, Raj N. Singh","doi":"10.1111/J.1551-2916.1988.TB00265.X","DOIUrl":null,"url":null,"abstract":"A modified indentation technique has been used to measure the interfacial shear stress in a number of ceramic matrices containing silicon carbide fibers. It was shown that the frictional component of interfacial stress was essentially zero when matrix thermal expansion was lower than that of the fiber and increased linearly with thermal expansion mismatch when matrix thermal expansion was higher. The interfacial shear stress was lowered when the fibers were coated with BN. Lower matrix shear stresses resulted in a more extensive fiber pullout during the composite fracture.","PeriodicalId":7260,"journal":{"name":"Advanced Ceramic Materials","volume":"34 1","pages":"506-509"},"PeriodicalIF":0.0000,"publicationDate":"1988-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"Effect of thermal expansion mismatch and fiber coating on the fiber/matrix interfacial shear stress in ceramic matrix composites\",\"authors\":\"M. Brun, Raj N. Singh\",\"doi\":\"10.1111/J.1551-2916.1988.TB00265.X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A modified indentation technique has been used to measure the interfacial shear stress in a number of ceramic matrices containing silicon carbide fibers. It was shown that the frictional component of interfacial stress was essentially zero when matrix thermal expansion was lower than that of the fiber and increased linearly with thermal expansion mismatch when matrix thermal expansion was higher. The interfacial shear stress was lowered when the fibers were coated with BN. Lower matrix shear stresses resulted in a more extensive fiber pullout during the composite fracture.\",\"PeriodicalId\":7260,\"journal\":{\"name\":\"Advanced Ceramic Materials\",\"volume\":\"34 1\",\"pages\":\"506-509\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Ceramic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/J.1551-2916.1988.TB00265.X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Ceramic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.1551-2916.1988.TB00265.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of thermal expansion mismatch and fiber coating on the fiber/matrix interfacial shear stress in ceramic matrix composites
A modified indentation technique has been used to measure the interfacial shear stress in a number of ceramic matrices containing silicon carbide fibers. It was shown that the frictional component of interfacial stress was essentially zero when matrix thermal expansion was lower than that of the fiber and increased linearly with thermal expansion mismatch when matrix thermal expansion was higher. The interfacial shear stress was lowered when the fibers were coated with BN. Lower matrix shear stresses resulted in a more extensive fiber pullout during the composite fracture.