基于零件的视觉变形人脸识别

Zhonglin Sun, Georgios Tzimiropoulos
{"title":"基于零件的视觉变形人脸识别","authors":"Zhonglin Sun, Georgios Tzimiropoulos","doi":"10.48550/arXiv.2212.00057","DOIUrl":null,"url":null,"abstract":"Holistic methods using CNNs and margin-based losses have dominated research on face recognition. In this work, we depart from this setting in two ways: (a) we employ the Vision Transformer as an architecture for training a very strong baseline for face recognition, simply called fViT, which already surpasses most state-of-the-art face recognition methods. (b) Secondly, we capitalize on the Transformer's inherent property to process information (visual tokens) extracted from irregular grids to devise a pipeline for face recognition which is reminiscent of part-based face recognition methods. Our pipeline, called part fViT, simply comprises a lightweight network to predict the coordinates of facial landmarks followed by the Vision Transformer operating on patches extracted from the predicted landmarks, and it is trained end-to-end with no landmark supervision. By learning to extract discriminative patches, our part-based Transformer further boosts the accuracy of our Vision Transformer baseline achieving state-of-the-art accuracy on several face recognition benchmarks.","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"25 1","pages":"611"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Part-based Face Recognition with Vision Transformers\",\"authors\":\"Zhonglin Sun, Georgios Tzimiropoulos\",\"doi\":\"10.48550/arXiv.2212.00057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Holistic methods using CNNs and margin-based losses have dominated research on face recognition. In this work, we depart from this setting in two ways: (a) we employ the Vision Transformer as an architecture for training a very strong baseline for face recognition, simply called fViT, which already surpasses most state-of-the-art face recognition methods. (b) Secondly, we capitalize on the Transformer's inherent property to process information (visual tokens) extracted from irregular grids to devise a pipeline for face recognition which is reminiscent of part-based face recognition methods. Our pipeline, called part fViT, simply comprises a lightweight network to predict the coordinates of facial landmarks followed by the Vision Transformer operating on patches extracted from the predicted landmarks, and it is trained end-to-end with no landmark supervision. By learning to extract discriminative patches, our part-based Transformer further boosts the accuracy of our Vision Transformer baseline achieving state-of-the-art accuracy on several face recognition benchmarks.\",\"PeriodicalId\":72437,\"journal\":{\"name\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"volume\":\"25 1\",\"pages\":\"611\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2212.00057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于cnn和边缘损失的整体方法在人脸识别研究中占据主导地位。在这项工作中,我们从两个方面偏离了这个设置:(a)我们使用视觉转换器作为一个架构来训练一个非常强大的人脸识别基线,简称为fViT,它已经超过了大多数最先进的人脸识别方法。(b)其次,我们利用Transformer的固有属性来处理从不规则网格中提取的信息(视觉标记),从而设计了一个用于人脸识别的管道,这让人想起基于部件的人脸识别方法。我们的管道,称为部分fViT,简单地包括一个轻量级的网络来预测面部地标的坐标,然后是视觉转换器操作从预测的地标提取的补丁,它是端到端的训练,没有地标监督。通过学习提取判别补丁,我们基于零件的Transformer进一步提高了Vision Transformer基线的准确性,在几个人脸识别基准上实现了最先进的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Part-based Face Recognition with Vision Transformers
Holistic methods using CNNs and margin-based losses have dominated research on face recognition. In this work, we depart from this setting in two ways: (a) we employ the Vision Transformer as an architecture for training a very strong baseline for face recognition, simply called fViT, which already surpasses most state-of-the-art face recognition methods. (b) Secondly, we capitalize on the Transformer's inherent property to process information (visual tokens) extracted from irregular grids to devise a pipeline for face recognition which is reminiscent of part-based face recognition methods. Our pipeline, called part fViT, simply comprises a lightweight network to predict the coordinates of facial landmarks followed by the Vision Transformer operating on patches extracted from the predicted landmarks, and it is trained end-to-end with no landmark supervision. By learning to extract discriminative patches, our part-based Transformer further boosts the accuracy of our Vision Transformer baseline achieving state-of-the-art accuracy on several face recognition benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信