随机Becker-Döring模型的准平稳分布和亚稳态

Erwan Hingant, R. Yvinec
{"title":"随机Becker-Döring模型的准平稳分布和亚稳态","authors":"Erwan Hingant, R. Yvinec","doi":"10.1214/21-ecp411","DOIUrl":null,"url":null,"abstract":"We study a stochastic version of the classical Becker-Doring model, a well-known kinetic model for cluster formation that predicts the existence of a long-lived metastable state before a thermodynamically unfavorable nucleation occurs, leading to a phase transition phenomena. This continuous-time Markov chain model has received little attention, compared to its deterministic differential equations counterpart. We show that the stochastic formulation leads to a precise and quantitative description of stochastic nucleation events thanks to an exponentially ergodic quasi-stationary distribution for the process conditionally on nucleation has not yet occurred.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quasi-stationary distribution and metastability for the stochastic Becker-Döring model\",\"authors\":\"Erwan Hingant, R. Yvinec\",\"doi\":\"10.1214/21-ecp411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a stochastic version of the classical Becker-Doring model, a well-known kinetic model for cluster formation that predicts the existence of a long-lived metastable state before a thermodynamically unfavorable nucleation occurs, leading to a phase transition phenomena. This continuous-time Markov chain model has received little attention, compared to its deterministic differential equations counterpart. We show that the stochastic formulation leads to a precise and quantitative description of stochastic nucleation events thanks to an exponentially ergodic quasi-stationary distribution for the process conditionally on nucleation has not yet occurred.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-ecp411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-ecp411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们研究了经典贝克-多林模型的随机版本,这是一个众所周知的簇形成动力学模型,预测在热力学上不利的成核发生之前存在一个长寿命的亚稳态,导致相变现象。与确定性微分方程相比,这种连续时间马尔可夫链模型很少受到关注。我们表明,随机公式导致了随机成核事件的精确和定量描述,这要归功于在成核尚未发生的条件下,过程的指数遍遍准平稳分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-stationary distribution and metastability for the stochastic Becker-Döring model
We study a stochastic version of the classical Becker-Doring model, a well-known kinetic model for cluster formation that predicts the existence of a long-lived metastable state before a thermodynamically unfavorable nucleation occurs, leading to a phase transition phenomena. This continuous-time Markov chain model has received little attention, compared to its deterministic differential equations counterpart. We show that the stochastic formulation leads to a precise and quantitative description of stochastic nucleation events thanks to an exponentially ergodic quasi-stationary distribution for the process conditionally on nucleation has not yet occurred.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信