部分有序集分解的一种有效算法

IF 0.7 Q2 MATHEMATICS
E. Badr, Mohamed EL-Hakeem, E. El-Sharawy, Thowiba E. Ahmed
{"title":"部分有序集分解的一种有效算法","authors":"E. Badr, Mohamed EL-Hakeem, E. El-Sharawy, Thowiba E. Ahmed","doi":"10.1155/2023/9920700","DOIUrl":null,"url":null,"abstract":"Efficient time complexities for partial ordered sets or posets are well-researched field. Hopcroft and Karp introduced an algorithm that solves the minimal chain decomposition in O (n2.5) time. Felsner et al. proposed an algorithm that reduces the time complexity to O (kn2) such that n is the number of elements of the poset and k is its width. The main goal of this paper is proposing an efficient algorithm to compute the width of a given partially ordered set P according to Dilworth’s theorem. It is an efficient and simple algorithm. The time complexity of this algorithm is O (kn), such that n is the number of elements of the partially ordered set P and k is the width of P. The computational results show that the proposed algorithm outperforms other related algorithms.","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":"35 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Algorithm for Decomposition of Partially Ordered Sets\",\"authors\":\"E. Badr, Mohamed EL-Hakeem, E. El-Sharawy, Thowiba E. Ahmed\",\"doi\":\"10.1155/2023/9920700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient time complexities for partial ordered sets or posets are well-researched field. Hopcroft and Karp introduced an algorithm that solves the minimal chain decomposition in O (n2.5) time. Felsner et al. proposed an algorithm that reduces the time complexity to O (kn2) such that n is the number of elements of the poset and k is its width. The main goal of this paper is proposing an efficient algorithm to compute the width of a given partially ordered set P according to Dilworth’s theorem. It is an efficient and simple algorithm. The time complexity of this algorithm is O (kn), such that n is the number of elements of the partially ordered set P and k is the width of P. The computational results show that the proposed algorithm outperforms other related algorithms.\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/9920700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/9920700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

偏序集或偏序集的有效时间复杂度是研究的热点。Hopcroft和Karp介绍了一种算法,可以在O (n2.5)时间内解决最小链分解问题。Felsner等人提出了一种将时间复杂度降低到O (kn2)的算法,其中n为偏置集的元素个数,k为偏置集的宽度。本文的主要目的是根据迪尔沃斯定理,提出一种计算给定偏序集P宽度的有效算法。它是一种高效、简单的算法。该算法的时间复杂度为O (kn),其中n为部分有序集合P的元素个数,k为P的宽度。计算结果表明,该算法优于其他相关算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Algorithm for Decomposition of Partially Ordered Sets
Efficient time complexities for partial ordered sets or posets are well-researched field. Hopcroft and Karp introduced an algorithm that solves the minimal chain decomposition in O (n2.5) time. Felsner et al. proposed an algorithm that reduces the time complexity to O (kn2) such that n is the number of elements of the poset and k is its width. The main goal of this paper is proposing an efficient algorithm to compute the width of a given partially ordered set P according to Dilworth’s theorem. It is an efficient and simple algorithm. The time complexity of this algorithm is O (kn), such that n is the number of elements of the partially ordered set P and k is the width of P. The computational results show that the proposed algorithm outperforms other related algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信