E. Badr, Mohamed EL-Hakeem, E. El-Sharawy, Thowiba E. Ahmed
{"title":"部分有序集分解的一种有效算法","authors":"E. Badr, Mohamed EL-Hakeem, E. El-Sharawy, Thowiba E. Ahmed","doi":"10.1155/2023/9920700","DOIUrl":null,"url":null,"abstract":"Efficient time complexities for partial ordered sets or posets are well-researched field. Hopcroft and Karp introduced an algorithm that solves the minimal chain decomposition in O (n2.5) time. Felsner et al. proposed an algorithm that reduces the time complexity to O (kn2) such that n is the number of elements of the poset and k is its width. The main goal of this paper is proposing an efficient algorithm to compute the width of a given partially ordered set P according to Dilworth’s theorem. It is an efficient and simple algorithm. The time complexity of this algorithm is O (kn), such that n is the number of elements of the partially ordered set P and k is the width of P. The computational results show that the proposed algorithm outperforms other related algorithms.","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":"35 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Algorithm for Decomposition of Partially Ordered Sets\",\"authors\":\"E. Badr, Mohamed EL-Hakeem, E. El-Sharawy, Thowiba E. Ahmed\",\"doi\":\"10.1155/2023/9920700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient time complexities for partial ordered sets or posets are well-researched field. Hopcroft and Karp introduced an algorithm that solves the minimal chain decomposition in O (n2.5) time. Felsner et al. proposed an algorithm that reduces the time complexity to O (kn2) such that n is the number of elements of the poset and k is its width. The main goal of this paper is proposing an efficient algorithm to compute the width of a given partially ordered set P according to Dilworth’s theorem. It is an efficient and simple algorithm. The time complexity of this algorithm is O (kn), such that n is the number of elements of the partially ordered set P and k is the width of P. The computational results show that the proposed algorithm outperforms other related algorithms.\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/9920700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/9920700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
An Efficient Algorithm for Decomposition of Partially Ordered Sets
Efficient time complexities for partial ordered sets or posets are well-researched field. Hopcroft and Karp introduced an algorithm that solves the minimal chain decomposition in O (n2.5) time. Felsner et al. proposed an algorithm that reduces the time complexity to O (kn2) such that n is the number of elements of the poset and k is its width. The main goal of this paper is proposing an efficient algorithm to compute the width of a given partially ordered set P according to Dilworth’s theorem. It is an efficient and simple algorithm. The time complexity of this algorithm is O (kn), such that n is the number of elements of the partially ordered set P and k is the width of P. The computational results show that the proposed algorithm outperforms other related algorithms.