通过智能全曲面确保空中卸载

Wen Wang, Wanli Ni, Hui Tian
{"title":"通过智能全曲面确保空中卸载","authors":"Wen Wang, Wanli Ni, Hui Tian","doi":"10.1109/GCWkshps52748.2021.9682087","DOIUrl":null,"url":null,"abstract":"Different from conventional reflecting-only metasurfaces, intelligent omni-surfaces (IOSs) are capable of reflecting and transmitting the received signals simultaneously. As such, users located at both sides of IOSs can be served efficiently. In this paper, a novel IOS-enhanced aerial offloading system is proposed in the presence of one ground eavesdropper. To maximize the secrecy energy efficiency (SEE) of the considered system, a non-convex problem is formulated by determining offloading strategy, allocating transmit power, designing reflection coefficients, and deploying unmanned aerial vehicle (UAV) location. To solve this non-convex and non-linear problem, an alternating optimization algorithm is developed to obtain a suboptimal solution with low complexity. Finally, simulation results demonstrate that: i) the SEE performance of aerial offloading systems can be significantly improved by the IOS as compared to benchmark schemes; ii) compared with intelligent reflecting surfaces (IRSs), IOSs can considerably extend the security deployment space of UAV.","PeriodicalId":6802,"journal":{"name":"2021 IEEE Globecom Workshops (GC Wkshps)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Securing Aerial Offloading via Intelligent Omni-Surface\",\"authors\":\"Wen Wang, Wanli Ni, Hui Tian\",\"doi\":\"10.1109/GCWkshps52748.2021.9682087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different from conventional reflecting-only metasurfaces, intelligent omni-surfaces (IOSs) are capable of reflecting and transmitting the received signals simultaneously. As such, users located at both sides of IOSs can be served efficiently. In this paper, a novel IOS-enhanced aerial offloading system is proposed in the presence of one ground eavesdropper. To maximize the secrecy energy efficiency (SEE) of the considered system, a non-convex problem is formulated by determining offloading strategy, allocating transmit power, designing reflection coefficients, and deploying unmanned aerial vehicle (UAV) location. To solve this non-convex and non-linear problem, an alternating optimization algorithm is developed to obtain a suboptimal solution with low complexity. Finally, simulation results demonstrate that: i) the SEE performance of aerial offloading systems can be significantly improved by the IOS as compared to benchmark schemes; ii) compared with intelligent reflecting surfaces (IRSs), IOSs can considerably extend the security deployment space of UAV.\",\"PeriodicalId\":6802,\"journal\":{\"name\":\"2021 IEEE Globecom Workshops (GC Wkshps)\",\"volume\":\"1 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Globecom Workshops (GC Wkshps)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCWkshps52748.2021.9682087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCWkshps52748.2021.9682087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

与传统的只反射的超表面不同,智能全表面能够同时反射和发射接收到的信号。这样,就可以有效地为位于ios两侧的用户提供服务。本文提出了一种新的地面监听器存在情况下的ios增强型空中卸载系统。为使系统的保密能量效率(SEE)最大化,通过确定卸载策略、分配发射功率、设计反射系数和部署无人机(UAV)位置来构造一个非凸问题。为了解决这一非凸非线性问题,提出了一种交替优化算法,以获得低复杂度的次优解。最后,仿真结果表明:i)与基准方案相比,采用IOS方案可以显著提高空中卸载系统的SEE性能;ii)与智能反射面相比,智能反射面可以大大扩展无人机的安全部署空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Securing Aerial Offloading via Intelligent Omni-Surface
Different from conventional reflecting-only metasurfaces, intelligent omni-surfaces (IOSs) are capable of reflecting and transmitting the received signals simultaneously. As such, users located at both sides of IOSs can be served efficiently. In this paper, a novel IOS-enhanced aerial offloading system is proposed in the presence of one ground eavesdropper. To maximize the secrecy energy efficiency (SEE) of the considered system, a non-convex problem is formulated by determining offloading strategy, allocating transmit power, designing reflection coefficients, and deploying unmanned aerial vehicle (UAV) location. To solve this non-convex and non-linear problem, an alternating optimization algorithm is developed to obtain a suboptimal solution with low complexity. Finally, simulation results demonstrate that: i) the SEE performance of aerial offloading systems can be significantly improved by the IOS as compared to benchmark schemes; ii) compared with intelligent reflecting surfaces (IRSs), IOSs can considerably extend the security deployment space of UAV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信