{"title":"无连续范数的fr<s:1>空间的不变子空间","authors":"Q. Menet","doi":"10.1090/proc/15418","DOIUrl":null,"url":null,"abstract":"Let $(X,(p_j))$ be a Frechet space with a Schauder basis and without continuous norm, where $(p_j)$ is an increasing sequence of seminorms inducing the topology of $X$. We show that $X$ satisfies the Invariant Subspace Property if and only if there exists $j_0\\ge 1$ such that $\\ker p_{j+1}$ is of finite codimension in $\\ker p_{j}$ for every $j\\ge j_0$.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant subspaces for Fréchet spaces without continuous norm\",\"authors\":\"Q. Menet\",\"doi\":\"10.1090/proc/15418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $(X,(p_j))$ be a Frechet space with a Schauder basis and without continuous norm, where $(p_j)$ is an increasing sequence of seminorms inducing the topology of $X$. We show that $X$ satisfies the Invariant Subspace Property if and only if there exists $j_0\\\\ge 1$ such that $\\\\ker p_{j+1}$ is of finite codimension in $\\\\ker p_{j}$ for every $j\\\\ge j_0$.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/15418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Invariant subspaces for Fréchet spaces without continuous norm
Let $(X,(p_j))$ be a Frechet space with a Schauder basis and without continuous norm, where $(p_j)$ is an increasing sequence of seminorms inducing the topology of $X$. We show that $X$ satisfies the Invariant Subspace Property if and only if there exists $j_0\ge 1$ such that $\ker p_{j+1}$ is of finite codimension in $\ker p_{j}$ for every $j\ge j_0$.