拟线性偏微分方程的Galerkin平均法和poincar范式

IF 1.2 2区 数学 Q1 MATHEMATICS
D. Bambusi
{"title":"拟线性偏微分方程的Galerkin平均法和poincar<e:1>范式","authors":"D. Bambusi","doi":"10.2422/2036-2145.2005.4.06","DOIUrl":null,"url":null,"abstract":"We use the Galerkin averaging method to construct a coordinate trans- formation putting a nonlinear PDE in Poincar´ e normal form up to finite order. We also give a rigorous estimate of the remainder showing that it is small as a dif- ferential operator of very high order. The abstract theorem is then applied to a quasilinear wave equation, to the water wave problem and to a nonlinear heat equation. The normal form is then used to construct approximate solutions whose difference from true solutions is estimated. In the case of hyperbolic equations we obtain an estimate of the error valid over time scales of order � −1 (� being the norm of the initial datum), as in averaging theorems. For parabolic equations we obtain an estimate of the error valid over infinite time.","PeriodicalId":50966,"journal":{"name":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","volume":"63 1","pages":"669-702"},"PeriodicalIF":1.2000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Galerkin averaging method and Poincaré normal form for some quasilinear PDEs\",\"authors\":\"D. Bambusi\",\"doi\":\"10.2422/2036-2145.2005.4.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use the Galerkin averaging method to construct a coordinate trans- formation putting a nonlinear PDE in Poincar´ e normal form up to finite order. We also give a rigorous estimate of the remainder showing that it is small as a dif- ferential operator of very high order. The abstract theorem is then applied to a quasilinear wave equation, to the water wave problem and to a nonlinear heat equation. The normal form is then used to construct approximate solutions whose difference from true solutions is estimated. In the case of hyperbolic equations we obtain an estimate of the error valid over time scales of order � −1 (� being the norm of the initial datum), as in averaging theorems. For parabolic equations we obtain an estimate of the error valid over infinite time.\",\"PeriodicalId\":50966,\"journal\":{\"name\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"volume\":\"63 1\",\"pages\":\"669-702\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2005-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.2005.4.06\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2422/2036-2145.2005.4.06","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 33

摘要

利用伽辽金平均法构造了一个坐标变换,使非线性偏微分方程具有有限阶庞加莱范式。我们也给出了余量的严格估计,表明它作为一个非常高阶的微分算子是很小的。然后将抽象定理应用于拟线性波动方程、水波问题和非线性热方程。然后使用范式构造近似解,估计其与真解的差。在双曲方程的情况下,我们得到了在时间尺度上有效误差的估计,其阶为−1(作为初始基准的范数),就像在平均定理中一样。对于抛物方程,我们得到了在无限时间内有效的误差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Galerkin averaging method and Poincaré normal form for some quasilinear PDEs
We use the Galerkin averaging method to construct a coordinate trans- formation putting a nonlinear PDE in Poincar´ e normal form up to finite order. We also give a rigorous estimate of the remainder showing that it is small as a dif- ferential operator of very high order. The abstract theorem is then applied to a quasilinear wave equation, to the water wave problem and to a nonlinear heat equation. The normal form is then used to construct approximate solutions whose difference from true solutions is estimated. In the case of hyperbolic equations we obtain an estimate of the error valid over time scales of order � −1 (� being the norm of the initial datum), as in averaging theorems. For parabolic equations we obtain an estimate of the error valid over infinite time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Annals of the Normale Superiore di Pisa, Science Class, publishes papers that contribute to the development of Mathematics both from the theoretical and the applied point of view. Research papers or papers of expository type are considered for publication. The Annals of the Normale Scuola di Pisa - Science Class is published quarterly Soft cover, 17x24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信