推荐系统中项目/用户的blofi表示

Zahra Farahi, A. Moeini, A. Kamandi
{"title":"推荐系统中项目/用户的blofi表示","authors":"Zahra Farahi, A. Moeini, A. Kamandi","doi":"10.1109/ICWR.2019.8765261","DOIUrl":null,"url":null,"abstract":"In this paper, we propose new algorithms to improve the performance of recommender systems, based on hierarchical Bloom filters. Since Bloom filters can make a tradeoff between space and time, proposing a new hierarchical Bloom filter causes a remarkable reduction in space and time complexity of recommender systems. Space reduction is due to hashing items in a Bloom filter to manage the sparsity of input vectors. Time reduction is due to the structure of hierarchical Bloom filter. To increase the accuracy of the recommender systems we use Probabilistic version of hierarchical Bloom filter. The structure of hierarchical Bloom filter is B+ tree of order d. Proposed algorithms not only decrease the time complexity but also have no significant effect on accuracy","PeriodicalId":6680,"journal":{"name":"2019 5th International Conference on Web Research (ICWR)","volume":"40 1","pages":"67-73"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bloofi Representation for Item/User in Recommender Systems\",\"authors\":\"Zahra Farahi, A. Moeini, A. Kamandi\",\"doi\":\"10.1109/ICWR.2019.8765261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose new algorithms to improve the performance of recommender systems, based on hierarchical Bloom filters. Since Bloom filters can make a tradeoff between space and time, proposing a new hierarchical Bloom filter causes a remarkable reduction in space and time complexity of recommender systems. Space reduction is due to hashing items in a Bloom filter to manage the sparsity of input vectors. Time reduction is due to the structure of hierarchical Bloom filter. To increase the accuracy of the recommender systems we use Probabilistic version of hierarchical Bloom filter. The structure of hierarchical Bloom filter is B+ tree of order d. Proposed algorithms not only decrease the time complexity but also have no significant effect on accuracy\",\"PeriodicalId\":6680,\"journal\":{\"name\":\"2019 5th International Conference on Web Research (ICWR)\",\"volume\":\"40 1\",\"pages\":\"67-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 5th International Conference on Web Research (ICWR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWR.2019.8765261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Web Research (ICWR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWR.2019.8765261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了新的算法来提高推荐系统的性能,基于分层布隆过滤器。由于Bloom过滤器可以在空间和时间之间进行权衡,因此提出一种新的分层Bloom过滤器可以显著降低推荐系统的空间和时间复杂性。空间减少是由于在布隆过滤器中散列项目来管理输入向量的稀疏性。分层布隆滤波器的结构减少了时间。为了提高推荐系统的准确性,我们使用了概率版本的分层布隆过滤器。分层布隆滤波器的结构为d阶B+树。本文提出的算法不仅降低了时间复杂度,而且对精度没有明显影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bloofi Representation for Item/User in Recommender Systems
In this paper, we propose new algorithms to improve the performance of recommender systems, based on hierarchical Bloom filters. Since Bloom filters can make a tradeoff between space and time, proposing a new hierarchical Bloom filter causes a remarkable reduction in space and time complexity of recommender systems. Space reduction is due to hashing items in a Bloom filter to manage the sparsity of input vectors. Time reduction is due to the structure of hierarchical Bloom filter. To increase the accuracy of the recommender systems we use Probabilistic version of hierarchical Bloom filter. The structure of hierarchical Bloom filter is B+ tree of order d. Proposed algorithms not only decrease the time complexity but also have no significant effect on accuracy
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信