利用多时相快速眼数据识别以色列北部农作物类型

Q Social Sciences
F. Beyer, T. Jarmer, B. Siegmann
{"title":"利用多时相快速眼数据识别以色列北部农作物类型","authors":"F. Beyer, T. Jarmer, B. Siegmann","doi":"10.1127/PFG/2015/0249","DOIUrl":null,"url":null,"abstract":"Summary: Accurate land use / land cover classifi-cation (LU/LC) of agricultural crops still repre-sents a major challenge for multispectral remotesensing. In order to obtain reliable classificationaccuracies on the basis of multispectral satellitedata,mergingcropclassesinratherbroadclassesisoftennecessary.Withregardtotherising availabil-ity and the improving spatial resolution of satellitedata, multitemporal analyses become increasinglyimportant for remote sensing investigations. Forthe separation of spectrally similar crops, multi-datesatelliteimagesinclude differentgrowthchar-acteristics duringthephenologicalperiod.Thepre-sent study aims at investigating a way to performhighlyaccurateclassificationswithnumerousagri-cultural classesusing multitemporalRapidEyedata. The Jeffries-Matusita separability (JM) wasused for applying a pre-procedure in order to findthe best multitemporal setting of all available im-ages withinone crop cycle, consisting of twoculti-vation periods P1 with 16 agricultural classes andP2 with 27 agricultural classes. Only one criticalclass pairing occurred for both P1 and P2 takinginto account the best multitemporal dataset. Themaximum likelihood (ML) classifier and the sup-port vector machine (SVM) were compared usingthemostsuitable multitemporalimages.Bothalgo-rithms achieved very high overall accuracies(OAA)of over 90%. SVM was slightly better witha classification accuracy of P1-OAA = 96.13% andP2-OAA=94.01%. MLprovidedaresult of OAA =94.83% correctly classified pixels for P1 and OAA= 93.28% for P2. Theprocessingtimeof ML,how-ever, was significantly shorter compared to SVM,infact by a factor of five.","PeriodicalId":56096,"journal":{"name":"Photogrammetrie Fernerkundung Geoinformation","volume":"30 1","pages":"21-32"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Identific ation of Agricultural Crop Types in Northern Israel using Multitemporal RapidEye Data\",\"authors\":\"F. Beyer, T. Jarmer, B. Siegmann\",\"doi\":\"10.1127/PFG/2015/0249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary: Accurate land use / land cover classifi-cation (LU/LC) of agricultural crops still repre-sents a major challenge for multispectral remotesensing. In order to obtain reliable classificationaccuracies on the basis of multispectral satellitedata,mergingcropclassesinratherbroadclassesisoftennecessary.Withregardtotherising availabil-ity and the improving spatial resolution of satellitedata, multitemporal analyses become increasinglyimportant for remote sensing investigations. Forthe separation of spectrally similar crops, multi-datesatelliteimagesinclude differentgrowthchar-acteristics duringthephenologicalperiod.Thepre-sent study aims at investigating a way to performhighlyaccurateclassificationswithnumerousagri-cultural classesusing multitemporalRapidEyedata. The Jeffries-Matusita separability (JM) wasused for applying a pre-procedure in order to findthe best multitemporal setting of all available im-ages withinone crop cycle, consisting of twoculti-vation periods P1 with 16 agricultural classes andP2 with 27 agricultural classes. Only one criticalclass pairing occurred for both P1 and P2 takinginto account the best multitemporal dataset. Themaximum likelihood (ML) classifier and the sup-port vector machine (SVM) were compared usingthemostsuitable multitemporalimages.Bothalgo-rithms achieved very high overall accuracies(OAA)of over 90%. SVM was slightly better witha classification accuracy of P1-OAA = 96.13% andP2-OAA=94.01%. MLprovidedaresult of OAA =94.83% correctly classified pixels for P1 and OAA= 93.28% for P2. Theprocessingtimeof ML,how-ever, was significantly shorter compared to SVM,infact by a factor of five.\",\"PeriodicalId\":56096,\"journal\":{\"name\":\"Photogrammetrie Fernerkundung Geoinformation\",\"volume\":\"30 1\",\"pages\":\"21-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photogrammetrie Fernerkundung Geoinformation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1127/PFG/2015/0249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetrie Fernerkundung Geoinformation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1127/PFG/2015/0249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 8

摘要

摘要:农作物的准确土地利用/土地覆盖分类(LU/LC)仍然是多光谱遥感面临的主要挑战。为了在多光谱卫星数据的基础上获得可靠的分类精度,通常需要将作物类别合并到相当宽的类别中。随着卫星数据可用性的增加和空间分辨率的提高,多时相分析对遥感调查变得越来越重要。为了分离光谱相似的作物,多日期卫星图像在物候期包含不同的生长特征。本研究旨在探讨一种使用多时间rapideyedata对众多农业文化类别进行高度准确分类的方法。采用Jeffries-Matusita可分性(JM)进行预处理,以便在一个作物周期内找到所有可用图像的最佳多时间设置,包括两个育成期P1(16个农业类)和p2(27个农业类)。考虑到最佳的多时间数据集,P1和P2只有一个关键类配对。使用最合适的多时间图像对最大似然(ML)分类器和支持向量机(SVM)进行比较。两种算法的总体精度(OAA)都超过90%。SVM稍好,分类准确率P1-OAA = 96.13%, p2 - oaa =94.01%。mld提供的结果显示,P1的正确率为OAA= 94.83%, P2的正确率为OAA= 93.28%。然而,与支持向量机相比,机器学习的处理时间要短得多,实际上缩短了五倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identific ation of Agricultural Crop Types in Northern Israel using Multitemporal RapidEye Data
Summary: Accurate land use / land cover classifi-cation (LU/LC) of agricultural crops still repre-sents a major challenge for multispectral remotesensing. In order to obtain reliable classificationaccuracies on the basis of multispectral satellitedata,mergingcropclassesinratherbroadclassesisoftennecessary.Withregardtotherising availabil-ity and the improving spatial resolution of satellitedata, multitemporal analyses become increasinglyimportant for remote sensing investigations. Forthe separation of spectrally similar crops, multi-datesatelliteimagesinclude differentgrowthchar-acteristics duringthephenologicalperiod.Thepre-sent study aims at investigating a way to performhighlyaccurateclassificationswithnumerousagri-cultural classesusing multitemporalRapidEyedata. The Jeffries-Matusita separability (JM) wasused for applying a pre-procedure in order to findthe best multitemporal setting of all available im-ages withinone crop cycle, consisting of twoculti-vation periods P1 with 16 agricultural classes andP2 with 27 agricultural classes. Only one criticalclass pairing occurred for both P1 and P2 takinginto account the best multitemporal dataset. Themaximum likelihood (ML) classifier and the sup-port vector machine (SVM) were compared usingthemostsuitable multitemporalimages.Bothalgo-rithms achieved very high overall accuracies(OAA)of over 90%. SVM was slightly better witha classification accuracy of P1-OAA = 96.13% andP2-OAA=94.01%. MLprovidedaresult of OAA =94.83% correctly classified pixels for P1 and OAA= 93.28% for P2. Theprocessingtimeof ML,how-ever, was significantly shorter compared to SVM,infact by a factor of five.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photogrammetrie Fernerkundung Geoinformation
Photogrammetrie Fernerkundung Geoinformation REMOTE SENSING-IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
CiteScore
1.36
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信