基于立体视觉的移动机器人蒙特卡罗定位

P. Elinas, J. Little
{"title":"基于立体视觉的移动机器人蒙特卡罗定位","authors":"P. Elinas, J. Little","doi":"10.15607/RSS.2005.I.049","DOIUrl":null,"url":null,"abstract":"This paper presents Monte-Carlo localization (MCL) [1] with a mixture proposal distribution for mobile robots with stereo vision. We combine filtering with the Scale Invariant Feature Transform (SIFT) image descriptor to accurately and efficiently estimate the robot’s location given a map of 3D point landmarks. Our approach completely decouples the motion model from the robot’s mechanics and is general enough to solve for the unconstrained 6-degrees of freedom camera motion. We call our approach σMCL. Compared to other MCL approaches σMCL is more accurate, without requiring that the robot move large distances and make many measurements. More importantly our approach is not limited to robots constrained to planar motion. Its strength is derived from its robust vision-based motion and observation models. σMCL is general, robust, efficient and accurate, utilizing the best of Bayesian filtering, invariant image features and multiple view geometry techniques.","PeriodicalId":87357,"journal":{"name":"Robotics science and systems : online proceedings","volume":"23 1","pages":"373-380"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"σMCL: Monte-Carlo Localization for Mobile Robots with Stereo Vision\",\"authors\":\"P. Elinas, J. Little\",\"doi\":\"10.15607/RSS.2005.I.049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents Monte-Carlo localization (MCL) [1] with a mixture proposal distribution for mobile robots with stereo vision. We combine filtering with the Scale Invariant Feature Transform (SIFT) image descriptor to accurately and efficiently estimate the robot’s location given a map of 3D point landmarks. Our approach completely decouples the motion model from the robot’s mechanics and is general enough to solve for the unconstrained 6-degrees of freedom camera motion. We call our approach σMCL. Compared to other MCL approaches σMCL is more accurate, without requiring that the robot move large distances and make many measurements. More importantly our approach is not limited to robots constrained to planar motion. Its strength is derived from its robust vision-based motion and observation models. σMCL is general, robust, efficient and accurate, utilizing the best of Bayesian filtering, invariant image features and multiple view geometry techniques.\",\"PeriodicalId\":87357,\"journal\":{\"name\":\"Robotics science and systems : online proceedings\",\"volume\":\"23 1\",\"pages\":\"373-380\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics science and systems : online proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15607/RSS.2005.I.049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics science and systems : online proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2005.I.049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

本文针对具有立体视觉的移动机器人,提出了一种混合建议分布的蒙特卡罗定位方法[1]。我们将滤波与尺度不变特征变换(SIFT)图像描述符相结合,在给定3D点地标的地图上准确有效地估计机器人的位置。我们的方法完全将运动模型与机器人的力学解耦,并且足以解决无约束的6自由度相机运动。我们称我们的方法为σMCL。与其他MCL方法相比,σMCL更精确,不需要机器人移动很远的距离和进行很多测量。更重要的是,我们的方法并不局限于平面运动的机器人。它的强度来自于它强大的基于视觉的运动和观察模型。σMCL是通用的、鲁棒的、高效的、准确的,它充分利用了贝叶斯滤波、不变图像特征和多视图几何技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
σMCL: Monte-Carlo Localization for Mobile Robots with Stereo Vision
This paper presents Monte-Carlo localization (MCL) [1] with a mixture proposal distribution for mobile robots with stereo vision. We combine filtering with the Scale Invariant Feature Transform (SIFT) image descriptor to accurately and efficiently estimate the robot’s location given a map of 3D point landmarks. Our approach completely decouples the motion model from the robot’s mechanics and is general enough to solve for the unconstrained 6-degrees of freedom camera motion. We call our approach σMCL. Compared to other MCL approaches σMCL is more accurate, without requiring that the robot move large distances and make many measurements. More importantly our approach is not limited to robots constrained to planar motion. Its strength is derived from its robust vision-based motion and observation models. σMCL is general, robust, efficient and accurate, utilizing the best of Bayesian filtering, invariant image features and multiple view geometry techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信