更换fa结构钢对bn-600反应器反应性储备的影响

O. Gurskaya, E. Dzugkoeva, L. Korobeynikova, V. Mishin, V. Stogov
{"title":"更换fa结构钢对bn-600反应器反应性储备的影响","authors":"O. Gurskaya, E. Dzugkoeva, L. Korobeynikova, V. Mishin, V. Stogov","doi":"10.55176/2414-1038-2020-4-78-85","DOIUrl":null,"url":null,"abstract":"The current program in Russia to increase the fuel consumption of fast reactors and increase its burn-out causes the transition to new structural materials, which, in turn, leads to changes in the neutron-physical characteristics of reactors. In particular, the drop in the reactivity reserve noted in the BN-600 reactor of the Beloyarsk NPP at the end of 76 operational cycles, as will be shown below, is due to the transition to a new type of shell steel with an increased content of nickel, which strongly affects the reactivity. Design support for the operation of the BN-600 and BN-800 fast reactors, as well as the experiments carried out on them, is performed by IPPE. This article presents the results of a calculated analysis of the expected changes in the reactivity reserve at the end of 76 operational cycles when replacing the shell steel in BN-600. In addition, the influence of experimental assemblies located in the core on the reactivity reserve of the BN-600 is analyzed. Analysis of calculations of the actual loading of the BN-600 reactor at 76 operational cycle using the methods of the 1st-order perturbation theory, strict perturbation theory, and the Monte Carlo method showed that a partial transition at 76 operational cycle to EK-164 shell steel leads to a decrease in the reactivity margin by 0.030±0.004 %Δk/k. Replacement of steel for the entire core will reduce the reactivity margin by ~0.12 %Δk/k, which is confirmed by Monte Carlo calculations. The calculated reactivity margin obtained at the end of 76 operational cycles for the hot state of the BN-600 reactor is in good agreement with the measured reactivity margin.","PeriodicalId":20426,"journal":{"name":"PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. SERIES: NUCLEAR AND REACTOR CONSTANTS","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EFFECT OF REPLACING FA STRUCTURAL STEEL ON THE REACTIVITY RESERVE IN THE BN-600 REACTOR\",\"authors\":\"O. Gurskaya, E. Dzugkoeva, L. Korobeynikova, V. Mishin, V. Stogov\",\"doi\":\"10.55176/2414-1038-2020-4-78-85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current program in Russia to increase the fuel consumption of fast reactors and increase its burn-out causes the transition to new structural materials, which, in turn, leads to changes in the neutron-physical characteristics of reactors. In particular, the drop in the reactivity reserve noted in the BN-600 reactor of the Beloyarsk NPP at the end of 76 operational cycles, as will be shown below, is due to the transition to a new type of shell steel with an increased content of nickel, which strongly affects the reactivity. Design support for the operation of the BN-600 and BN-800 fast reactors, as well as the experiments carried out on them, is performed by IPPE. This article presents the results of a calculated analysis of the expected changes in the reactivity reserve at the end of 76 operational cycles when replacing the shell steel in BN-600. In addition, the influence of experimental assemblies located in the core on the reactivity reserve of the BN-600 is analyzed. Analysis of calculations of the actual loading of the BN-600 reactor at 76 operational cycle using the methods of the 1st-order perturbation theory, strict perturbation theory, and the Monte Carlo method showed that a partial transition at 76 operational cycle to EK-164 shell steel leads to a decrease in the reactivity margin by 0.030±0.004 %Δk/k. Replacement of steel for the entire core will reduce the reactivity margin by ~0.12 %Δk/k, which is confirmed by Monte Carlo calculations. The calculated reactivity margin obtained at the end of 76 operational cycles for the hot state of the BN-600 reactor is in good agreement with the measured reactivity margin.\",\"PeriodicalId\":20426,\"journal\":{\"name\":\"PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. SERIES: NUCLEAR AND REACTOR CONSTANTS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. SERIES: NUCLEAR AND REACTOR CONSTANTS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55176/2414-1038-2020-4-78-85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. SERIES: NUCLEAR AND REACTOR CONSTANTS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55176/2414-1038-2020-4-78-85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

俄罗斯目前的计划是增加快堆的燃料消耗,增加其燃尽,导致向新的结构材料过渡,这反过来又导致反应堆的中子物理特性发生变化。特别是,别洛雅尔斯克核电站BN-600反应堆在76个运行周期结束时反应性储备的下降,如下所示,是由于过渡到镍含量增加的新型壳钢,这强烈影响了反应性。BN-600和BN-800快堆运行的设计支持,以及对它们进行的实验,都是由IPPE进行的。本文介绍了BN-600在76个运行周期结束时,更换壳钢时反应性储备预期变化的计算分析结果。此外,还分析了堆芯内实验组件对BN-600反应性储备的影响。利用一阶摄动理论、严格摄动理论和蒙特卡罗方法对bnn -600反应堆在76个运行周期的实际负荷进行了计算分析,结果表明,在76个运行周期部分过渡到EK-164壳钢会导致反应性余量降低0.030±0.004% Δk/k。用蒙特卡罗计算证实,整个堆芯更换钢将使反应性余量降低~ 0.12% Δk/k。BN-600反应堆热态76个运行循环结束时计算的反应性裕度与实测的反应性裕度吻合良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EFFECT OF REPLACING FA STRUCTURAL STEEL ON THE REACTIVITY RESERVE IN THE BN-600 REACTOR
The current program in Russia to increase the fuel consumption of fast reactors and increase its burn-out causes the transition to new structural materials, which, in turn, leads to changes in the neutron-physical characteristics of reactors. In particular, the drop in the reactivity reserve noted in the BN-600 reactor of the Beloyarsk NPP at the end of 76 operational cycles, as will be shown below, is due to the transition to a new type of shell steel with an increased content of nickel, which strongly affects the reactivity. Design support for the operation of the BN-600 and BN-800 fast reactors, as well as the experiments carried out on them, is performed by IPPE. This article presents the results of a calculated analysis of the expected changes in the reactivity reserve at the end of 76 operational cycles when replacing the shell steel in BN-600. In addition, the influence of experimental assemblies located in the core on the reactivity reserve of the BN-600 is analyzed. Analysis of calculations of the actual loading of the BN-600 reactor at 76 operational cycle using the methods of the 1st-order perturbation theory, strict perturbation theory, and the Monte Carlo method showed that a partial transition at 76 operational cycle to EK-164 shell steel leads to a decrease in the reactivity margin by 0.030±0.004 %Δk/k. Replacement of steel for the entire core will reduce the reactivity margin by ~0.12 %Δk/k, which is confirmed by Monte Carlo calculations. The calculated reactivity margin obtained at the end of 76 operational cycles for the hot state of the BN-600 reactor is in good agreement with the measured reactivity margin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信