布朗自交局部时零处渐近性的改进

Pub Date : 2022-12-29 DOI:10.1142/s0219025723500182
A. Dorogovtsev, N. Salhi
{"title":"布朗自交局部时零处渐近性的改进","authors":"A. Dorogovtsev, N. Salhi","doi":"10.1142/s0219025723500182","DOIUrl":null,"url":null,"abstract":"In this article we establish some estimates related to the Gaussian densities and to Hermite polynomials in order to obtain an almost sure estimate for each term of the It\\^{o}-Wiener expansion of the self-intersection local times of the Brownian motion. In dimension $d\\geqslant 4$ the self-intersection local times of the Brownian motion can be considered as a family of measures on the classical Wiener space. We provide some asymptotics relative to these measures. Finally, we try to estimate the quadratic Wasserstein distance between these measures and the Wiener measure.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refinements of asymptotics at zero of Brownian self-intersection local times\",\"authors\":\"A. Dorogovtsev, N. Salhi\",\"doi\":\"10.1142/s0219025723500182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we establish some estimates related to the Gaussian densities and to Hermite polynomials in order to obtain an almost sure estimate for each term of the It\\\\^{o}-Wiener expansion of the self-intersection local times of the Brownian motion. In dimension $d\\\\geqslant 4$ the self-intersection local times of the Brownian motion can be considered as a family of measures on the classical Wiener space. We provide some asymptotics relative to these measures. Finally, we try to estimate the quadratic Wasserstein distance between these measures and the Wiener measure.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219025723500182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025723500182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了与高斯密度和埃尔米特多项式有关的一些估计,以便对布朗运动的自交局部时间Itô-Wiener展开的每一项得到一个几乎肯定的估计。在$d\geqslant 4$维中,布朗运动的自交局部时间可以看作是经典维纳空间上的测度族。我们提供了一些关于这些测度的渐近性。最后,我们尝试估计这些度量与Wiener度量之间的二次Wasserstein距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Refinements of asymptotics at zero of Brownian self-intersection local times
In this article we establish some estimates related to the Gaussian densities and to Hermite polynomials in order to obtain an almost sure estimate for each term of the It\^{o}-Wiener expansion of the self-intersection local times of the Brownian motion. In dimension $d\geqslant 4$ the self-intersection local times of the Brownian motion can be considered as a family of measures on the classical Wiener space. We provide some asymptotics relative to these measures. Finally, we try to estimate the quadratic Wasserstein distance between these measures and the Wiener measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信