将数据集转化为以患者为中心的知识工具

R. Bahati, F. Gwadry-Sridhar
{"title":"将数据集转化为以患者为中心的知识工具","authors":"R. Bahati, F. Gwadry-Sridhar","doi":"10.1109/CBMS.2013.6627876","DOIUrl":null,"url":null,"abstract":"This paper describes an approach utilizing both data analysis and visualization to help diabetes patients improve medication compliance. Through information visualization tools, we aim to provide feedback to patients to encourage behavior change. The system has two core building blocks: (1) Data analysis combining several statistical and machine learning models, founded under different principles and assumptions, into a single meta-model for predicting compliance behavior. The aim is to create superior models for behavior prediction - knowledge that can then be translated into patient-centered decision-support tools. (2) Incorporating data analysis and visualization enabling datasets to be turned into knowledge utilities that can intelligently interact with participants by alerting them to any interesting correlations within the data. Such tools could provide feedback indicating, for example, a high-risk to medication non-compliance behavior in which case appropriate resources could be directed to those who need help the most.","PeriodicalId":20519,"journal":{"name":"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems","volume":"44 1","pages":"558-559"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turning datasets into patient-centered knowledge utilities\",\"authors\":\"R. Bahati, F. Gwadry-Sridhar\",\"doi\":\"10.1109/CBMS.2013.6627876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an approach utilizing both data analysis and visualization to help diabetes patients improve medication compliance. Through information visualization tools, we aim to provide feedback to patients to encourage behavior change. The system has two core building blocks: (1) Data analysis combining several statistical and machine learning models, founded under different principles and assumptions, into a single meta-model for predicting compliance behavior. The aim is to create superior models for behavior prediction - knowledge that can then be translated into patient-centered decision-support tools. (2) Incorporating data analysis and visualization enabling datasets to be turned into knowledge utilities that can intelligently interact with participants by alerting them to any interesting correlations within the data. Such tools could provide feedback indicating, for example, a high-risk to medication non-compliance behavior in which case appropriate resources could be directed to those who need help the most.\",\"PeriodicalId\":20519,\"journal\":{\"name\":\"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems\",\"volume\":\"44 1\",\"pages\":\"558-559\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2013.6627876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2013.6627876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一种利用数据分析和可视化来帮助糖尿病患者提高药物依从性的方法。通过信息可视化工具,我们的目标是为患者提供反馈,鼓励他们改变行为。该系统有两个核心组成部分:(1)数据分析,将基于不同原则和假设建立的多个统计和机器学习模型结合到一个元模型中,用于预测合规行为。其目的是创建行为预测的高级模型,然后将这些知识转化为以患者为中心的决策支持工具。(2)结合数据分析和可视化,使数据集转化为知识工具,可以通过提醒参与者数据中任何有趣的相关性来智能地与参与者交互。这些工具可以提供反馈,例如,表明高风险的药物不遵守行为,在这种情况下,适当的资源可以定向到那些最需要帮助的人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Turning datasets into patient-centered knowledge utilities
This paper describes an approach utilizing both data analysis and visualization to help diabetes patients improve medication compliance. Through information visualization tools, we aim to provide feedback to patients to encourage behavior change. The system has two core building blocks: (1) Data analysis combining several statistical and machine learning models, founded under different principles and assumptions, into a single meta-model for predicting compliance behavior. The aim is to create superior models for behavior prediction - knowledge that can then be translated into patient-centered decision-support tools. (2) Incorporating data analysis and visualization enabling datasets to be turned into knowledge utilities that can intelligently interact with participants by alerting them to any interesting correlations within the data. Such tools could provide feedback indicating, for example, a high-risk to medication non-compliance behavior in which case appropriate resources could be directed to those who need help the most.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信