GF(2m)上位并行双基乘法器的低复杂度设计

Jenq-Haur Wang, H. Chang, C. Chiou, Wen-Yew Liang
{"title":"GF(2m)上位并行双基乘法器的低复杂度设计","authors":"Jenq-Haur Wang, H. Chang, C. Chiou, Wen-Yew Liang","doi":"10.1049/iet-ifs.2012.0210","DOIUrl":null,"url":null,"abstract":"Recently, information security is heavily dependent on cryptosystems such as Rivest-Shamir-Adleman algorithm (RSA algorithm) and elliptic curve cryptosystem (ECC). RSA can provide higher security level than ECC, but it is not suitable for the resource-constrained devices such as smart phones or embedded system. Thus, ECC is attracted on application in resource-constrained devices because it can achieve the same security level, but uses less key length than RSA. Galois or finite field multiplication is the core arithmetic operation of ECC. There are three popular bases in the finite field over GF(2m), polynomial basis, normal basis and dual basis (DB). Each basis representation has its own advantages. In this study, the authors will introduce a low-complexity bit-parallel DB multiplier using the multiplexer approach. Compared with the related work, our design saves up to 60% of space complexity.","PeriodicalId":13305,"journal":{"name":"IET Inf. Secur.","volume":"42 1","pages":"324-328"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Low-complexity design of bit-parallel dual-basis multiplier over GF(2m)\",\"authors\":\"Jenq-Haur Wang, H. Chang, C. Chiou, Wen-Yew Liang\",\"doi\":\"10.1049/iet-ifs.2012.0210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, information security is heavily dependent on cryptosystems such as Rivest-Shamir-Adleman algorithm (RSA algorithm) and elliptic curve cryptosystem (ECC). RSA can provide higher security level than ECC, but it is not suitable for the resource-constrained devices such as smart phones or embedded system. Thus, ECC is attracted on application in resource-constrained devices because it can achieve the same security level, but uses less key length than RSA. Galois or finite field multiplication is the core arithmetic operation of ECC. There are three popular bases in the finite field over GF(2m), polynomial basis, normal basis and dual basis (DB). Each basis representation has its own advantages. In this study, the authors will introduce a low-complexity bit-parallel DB multiplier using the multiplexer approach. Compared with the related work, our design saves up to 60% of space complexity.\",\"PeriodicalId\":13305,\"journal\":{\"name\":\"IET Inf. Secur.\",\"volume\":\"42 1\",\"pages\":\"324-328\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Inf. Secur.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/iet-ifs.2012.0210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Inf. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-ifs.2012.0210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

目前,信息安全在很大程度上依赖于Rivest-Shamir-Adleman算法(RSA)和椭圆曲线密码系统(ECC)等密码系统。RSA可以提供比ECC更高的安全级别,但不适合智能手机或嵌入式系统等资源受限的设备。因此,ECC可以达到相同的安全级别,但使用的密钥长度比RSA少,因此在资源受限的设备中得到了应用。伽罗瓦或有限域乘法是ECC的核心算术运算。GF(2m)有限域上常用的基有三种:多项式基、正规基和对偶基(DB)。每种基表示都有自己的优点。在本研究中,作者将介绍一种使用多路复用器方法的低复杂度位并行DB乘法器。与相关工作相比,我们的设计节省了高达60%的空间复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-complexity design of bit-parallel dual-basis multiplier over GF(2m)
Recently, information security is heavily dependent on cryptosystems such as Rivest-Shamir-Adleman algorithm (RSA algorithm) and elliptic curve cryptosystem (ECC). RSA can provide higher security level than ECC, but it is not suitable for the resource-constrained devices such as smart phones or embedded system. Thus, ECC is attracted on application in resource-constrained devices because it can achieve the same security level, but uses less key length than RSA. Galois or finite field multiplication is the core arithmetic operation of ECC. There are three popular bases in the finite field over GF(2m), polynomial basis, normal basis and dual basis (DB). Each basis representation has its own advantages. In this study, the authors will introduce a low-complexity bit-parallel DB multiplier using the multiplexer approach. Compared with the related work, our design saves up to 60% of space complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信