CCDLC检测框架——结合聚类和深度学习分类的语义克隆

Abdullah M. Sheneamer
{"title":"CCDLC检测框架——结合聚类和深度学习分类的语义克隆","authors":"Abdullah M. Sheneamer","doi":"10.1109/ICMLA.2018.00111","DOIUrl":null,"url":null,"abstract":"Code clones introduce difficulties in software maintenance and cause bug propagation. We propose a framework for detecting Java code obfuscation and both syntactic and semantic clones by adding cluster data which is using the sequential information bottleneck algorithm with (CNN) deep learing classification, called CCDLC. The CCDLC uses a novel Java bytecode dependency graph (BDG) along with program dependency graph (PDG) and abstract syntax tree (AST) features. We use several publicly available code clone and Java obfuscated code datasets for validating effectiveness of our framework. Our experimental results and evaluation indicate that using the combination of clustering and deep learning classification is a viable methodology, since they improve detecting clones and obfuscation code on the corpus. The key benefit of this approach is that our tool can improve detecting obfuscation accuracy about 5.44% and improve finding both Syntactic and Semantic clones accuracy about 12%","PeriodicalId":6533,"journal":{"name":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"86 1","pages":"701-706"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"CCDLC Detection Framework-Combining Clustering with Deep Learning Classification for Semantic Clones\",\"authors\":\"Abdullah M. Sheneamer\",\"doi\":\"10.1109/ICMLA.2018.00111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Code clones introduce difficulties in software maintenance and cause bug propagation. We propose a framework for detecting Java code obfuscation and both syntactic and semantic clones by adding cluster data which is using the sequential information bottleneck algorithm with (CNN) deep learing classification, called CCDLC. The CCDLC uses a novel Java bytecode dependency graph (BDG) along with program dependency graph (PDG) and abstract syntax tree (AST) features. We use several publicly available code clone and Java obfuscated code datasets for validating effectiveness of our framework. Our experimental results and evaluation indicate that using the combination of clustering and deep learning classification is a viable methodology, since they improve detecting clones and obfuscation code on the corpus. The key benefit of this approach is that our tool can improve detecting obfuscation accuracy about 5.44% and improve finding both Syntactic and Semantic clones accuracy about 12%\",\"PeriodicalId\":6533,\"journal\":{\"name\":\"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"86 1\",\"pages\":\"701-706\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2018.00111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2018.00111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

代码克隆给软件维护带来困难,并导致bug传播。我们提出了一个框架,通过添加聚类数据来检测Java代码混淆和语法和语义克隆,该框架使用(CNN)深度学习分类的顺序信息瓶颈算法,称为CCDLC。CCDLC使用新颖的Java字节码依赖图(BDG)以及程序依赖图(PDG)和抽象语法树(AST)特性。我们使用几个公开可用的代码克隆和Java混淆代码数据集来验证我们框架的有效性。我们的实验结果和评估表明,使用聚类和深度学习分类的组合是一种可行的方法,因为它们改进了对语料库上的克隆和混淆代码的检测。这种方法的主要好处是,我们的工具可以将检测混淆的准确率提高约5.44%,并将查找语法和语义克隆的准确率提高约12%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CCDLC Detection Framework-Combining Clustering with Deep Learning Classification for Semantic Clones
Code clones introduce difficulties in software maintenance and cause bug propagation. We propose a framework for detecting Java code obfuscation and both syntactic and semantic clones by adding cluster data which is using the sequential information bottleneck algorithm with (CNN) deep learing classification, called CCDLC. The CCDLC uses a novel Java bytecode dependency graph (BDG) along with program dependency graph (PDG) and abstract syntax tree (AST) features. We use several publicly available code clone and Java obfuscated code datasets for validating effectiveness of our framework. Our experimental results and evaluation indicate that using the combination of clustering and deep learning classification is a viable methodology, since they improve detecting clones and obfuscation code on the corpus. The key benefit of this approach is that our tool can improve detecting obfuscation accuracy about 5.44% and improve finding both Syntactic and Semantic clones accuracy about 12%
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信