对称多元密度函数的分解

Q4 Mathematics
Kiyotaka Iki, Kouji Tahata, S. Tomizawa
{"title":"对称多元密度函数的分解","authors":"Kiyotaka Iki, Kouji Tahata, S. Tomizawa","doi":"10.55937/sut/1360240217","DOIUrl":null,"url":null,"abstract":"For a T-variate density function, the present article denes the quasi-symmetry of order k (< T) and the marginal symmetry of order k, and gives the theorem that the density function is T-variate permutation symmetric if and only if it is quasi-symmetric and marginal symmetric of order k. The theorem is illustrated for the multivariate normal density function. AMS 2010 Mathematics Subject Classication. 62H17.","PeriodicalId":38708,"journal":{"name":"SUT Journal of Mathematics","volume":"57 2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Decomposition of symmetric multivariate density function\",\"authors\":\"Kiyotaka Iki, Kouji Tahata, S. Tomizawa\",\"doi\":\"10.55937/sut/1360240217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a T-variate density function, the present article denes the quasi-symmetry of order k (< T) and the marginal symmetry of order k, and gives the theorem that the density function is T-variate permutation symmetric if and only if it is quasi-symmetric and marginal symmetric of order k. The theorem is illustrated for the multivariate normal density function. AMS 2010 Mathematics Subject Classication. 62H17.\",\"PeriodicalId\":38708,\"journal\":{\"name\":\"SUT Journal of Mathematics\",\"volume\":\"57 2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SUT Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55937/sut/1360240217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SUT Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55937/sut/1360240217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

对于一个T变量密度函数,给出了k阶(< T)的拟对称和k阶的边缘对称,并给出了密度函数是T变量置换对称的当且仅当它是k阶的拟对称和边缘对称的定理。对多元正态密度函数给出了该定理。AMS 2010数学学科分类。62H17。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decomposition of symmetric multivariate density function
For a T-variate density function, the present article denes the quasi-symmetry of order k (< T) and the marginal symmetry of order k, and gives the theorem that the density function is T-variate permutation symmetric if and only if it is quasi-symmetric and marginal symmetric of order k. The theorem is illustrated for the multivariate normal density function. AMS 2010 Mathematics Subject Classication. 62H17.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SUT Journal of Mathematics
SUT Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信