采用多孔硅技术制备埋地微通道的平面CMOS兼容工艺

G. Kaltsas, D. N. Pagonis, A. Nassiopoulou
{"title":"采用多孔硅技术制备埋地微通道的平面CMOS兼容工艺","authors":"G. Kaltsas, D. N. Pagonis, A. Nassiopoulou","doi":"10.1109/JMEMS.2003.820270","DOIUrl":null,"url":null,"abstract":"This work presents a new method for the fabrication of buried microchannels, covered with porous silicon (PS). The specific method is a two-step electrochemical process, which combines PS formation and electropolishing. In a first step a PS layer with a specific depth is created at a predefined area and in the following step a cavity underneath is formed, by electropolishing of silicon. The shape of the microchannel is semi-cylindrical due to isotropic formation. The method allows accurate control of the dimensions of both PS and the cavity. The formation conditions of the PS layer and the cavity were optimized so as to obtain smooth microchannel walls. In order to obtain stable structures the area underneath the PS masking layer was transformed into n-type by implantation, taking advantage of the selectivity of PS formation between n- and p-type silicon. With this technique, a monocrystalline support for the PS layer is formed on top of the cavity. Various microchannel diameters with different thickness of capping PS layer were obtained. The process is CMOS compatible and it uses only one lithographic step and leaves the surface of the wafer unaffected for further processing. A microfluidic thermal flow sensor was fabricated using this technology, the experimental evaluation of which is in progress.","PeriodicalId":13438,"journal":{"name":"IEEE\\/ASME Journal of Microelectromechanical Systems","volume":"544 1","pages":"863-872"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Planar CMOS compatible process for the fabrication of buried microchannels in silicon, using porous-silicon technology\",\"authors\":\"G. Kaltsas, D. N. Pagonis, A. Nassiopoulou\",\"doi\":\"10.1109/JMEMS.2003.820270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a new method for the fabrication of buried microchannels, covered with porous silicon (PS). The specific method is a two-step electrochemical process, which combines PS formation and electropolishing. In a first step a PS layer with a specific depth is created at a predefined area and in the following step a cavity underneath is formed, by electropolishing of silicon. The shape of the microchannel is semi-cylindrical due to isotropic formation. The method allows accurate control of the dimensions of both PS and the cavity. The formation conditions of the PS layer and the cavity were optimized so as to obtain smooth microchannel walls. In order to obtain stable structures the area underneath the PS masking layer was transformed into n-type by implantation, taking advantage of the selectivity of PS formation between n- and p-type silicon. With this technique, a monocrystalline support for the PS layer is formed on top of the cavity. Various microchannel diameters with different thickness of capping PS layer were obtained. The process is CMOS compatible and it uses only one lithographic step and leaves the surface of the wafer unaffected for further processing. A microfluidic thermal flow sensor was fabricated using this technology, the experimental evaluation of which is in progress.\",\"PeriodicalId\":13438,\"journal\":{\"name\":\"IEEE\\\\/ASME Journal of Microelectromechanical Systems\",\"volume\":\"544 1\",\"pages\":\"863-872\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE\\\\/ASME Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JMEMS.2003.820270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE\\/ASME Journal of Microelectromechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JMEMS.2003.820270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

本文提出了一种用多孔硅(PS)覆盖埋地微通道的新方法。具体方法是两步电化学过程,将PS形成和电抛光相结合。在第一步中,在预定义的区域创建具有特定深度的PS层,并且在接下来的步骤中,通过硅的电抛光形成下面的空腔。由于各向同性的形成,微通道的形状是半圆柱形的。该方法可以精确控制PS和腔体的尺寸。优化了PS层和腔体的形成条件,获得了光滑的微通道壁。为了获得稳定的结构,利用n型和p型硅之间形成PS的选择性,通过注入将PS掩蔽层下的区域转变为n型。利用这种技术,在空腔的顶部形成了PS层的单晶支撑。在不同覆盖层厚度下,得到了不同的微通道直径。该工艺是CMOS兼容的,它只使用一个光刻步骤,并且不影响晶圆表面的进一步处理。利用该技术制作了微流控热流传感器,目前正在进行实验评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Planar CMOS compatible process for the fabrication of buried microchannels in silicon, using porous-silicon technology
This work presents a new method for the fabrication of buried microchannels, covered with porous silicon (PS). The specific method is a two-step electrochemical process, which combines PS formation and electropolishing. In a first step a PS layer with a specific depth is created at a predefined area and in the following step a cavity underneath is formed, by electropolishing of silicon. The shape of the microchannel is semi-cylindrical due to isotropic formation. The method allows accurate control of the dimensions of both PS and the cavity. The formation conditions of the PS layer and the cavity were optimized so as to obtain smooth microchannel walls. In order to obtain stable structures the area underneath the PS masking layer was transformed into n-type by implantation, taking advantage of the selectivity of PS formation between n- and p-type silicon. With this technique, a monocrystalline support for the PS layer is formed on top of the cavity. Various microchannel diameters with different thickness of capping PS layer were obtained. The process is CMOS compatible and it uses only one lithographic step and leaves the surface of the wafer unaffected for further processing. A microfluidic thermal flow sensor was fabricated using this technology, the experimental evaluation of which is in progress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信