具有观察者的最优上下文敏感动态偏序约简

E. Albert, M. G. D. L. Banda, M. Gómez-Zamalloa, Miguel Isabel, Peter James Stuckey
{"title":"具有观察者的最优上下文敏感动态偏序约简","authors":"E. Albert, M. G. D. L. Banda, M. Gómez-Zamalloa, Miguel Isabel, Peter James Stuckey","doi":"10.1145/3293882.3330565","DOIUrl":null,"url":null,"abstract":"Dynamic Partial Order Reduction (DPOR) algorithms are used in stateless model checking to avoid the exploration of equivalent execution sequences. DPOR relies on the notion of independence between execution steps to detect equivalence. Recent progress in the area has introduced more accurate ways to detect independence: Context-Sensitive DPOR considers two steps p and t independent in the current state if the states obtained by executing p · t and t · p are the same; Optimal DPOR with Observers makes their dependency conditional to the existence of future events that observe their operations. We introduce a new algorithm, Optimal Context-Sensitive DPOR with Observers, that combines these two notions of conditional independence, and goes beyond them by exploiting their synergies. Experimental evaluation shows that our gains increase exponentially with the size of the considered inputs.","PeriodicalId":20624,"journal":{"name":"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Optimal context-sensitive dynamic partial order reduction with observers\",\"authors\":\"E. Albert, M. G. D. L. Banda, M. Gómez-Zamalloa, Miguel Isabel, Peter James Stuckey\",\"doi\":\"10.1145/3293882.3330565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic Partial Order Reduction (DPOR) algorithms are used in stateless model checking to avoid the exploration of equivalent execution sequences. DPOR relies on the notion of independence between execution steps to detect equivalence. Recent progress in the area has introduced more accurate ways to detect independence: Context-Sensitive DPOR considers two steps p and t independent in the current state if the states obtained by executing p · t and t · p are the same; Optimal DPOR with Observers makes their dependency conditional to the existence of future events that observe their operations. We introduce a new algorithm, Optimal Context-Sensitive DPOR with Observers, that combines these two notions of conditional independence, and goes beyond them by exploiting their synergies. Experimental evaluation shows that our gains increase exponentially with the size of the considered inputs.\",\"PeriodicalId\":20624,\"journal\":{\"name\":\"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3293882.3330565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3293882.3330565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在无状态模型检查中采用动态偏序约简算法,避免了对等效执行序列的探索。DPOR依赖于执行步骤之间的独立性概念来检测等价性。该领域的最新进展引入了更准确的独立性检测方法:如果执行p·t和t·p获得的状态相同,则上下文敏感DPOR认为当前状态下的两个步骤p和t是独立的;带有观察者的最优DPOR使它们的依赖性以观察其操作的未来事件的存在为条件。我们引入了一种新的算法,最优上下文敏感DPOR与观察者,它结合了这两个条件独立的概念,并通过利用它们的协同作用超越了它们。实验评估表明,我们的增益随着考虑的输入的大小呈指数增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal context-sensitive dynamic partial order reduction with observers
Dynamic Partial Order Reduction (DPOR) algorithms are used in stateless model checking to avoid the exploration of equivalent execution sequences. DPOR relies on the notion of independence between execution steps to detect equivalence. Recent progress in the area has introduced more accurate ways to detect independence: Context-Sensitive DPOR considers two steps p and t independent in the current state if the states obtained by executing p · t and t · p are the same; Optimal DPOR with Observers makes their dependency conditional to the existence of future events that observe their operations. We introduce a new algorithm, Optimal Context-Sensitive DPOR with Observers, that combines these two notions of conditional independence, and goes beyond them by exploiting their synergies. Experimental evaluation shows that our gains increase exponentially with the size of the considered inputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信