图的独立罗马束缚

S. Kosari, J. Amjadi, M. Chellali, S. M. Sheikholeslami
{"title":"图的独立罗马束缚","authors":"S. Kosari, J. Amjadi, M. Chellali, S. M. Sheikholeslami","doi":"10.1051/ro/2023017","DOIUrl":null,"url":null,"abstract":"An independent Roman dominating function (IRD-function) on a graph $G$ is a\n\nfunction $f:V(G)\\rightarrow\\{0,1,2\\}$ satisfying the conditions that (i) every\n\nvertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which\n\n$f(v)=2$, and (ii) the set of all vertices assigned non-zero\n\nvalues under $f$ is independent. The weight of an IRD-function is\n\nthe sum of its function values over all vertices, and the independent Roman\n\ndomination number $i_{R}(G)$ of $G$ is the minimum weight of an\n\nIRD-function on $G$. In this paper, we initiate the study of the independent\n\nRoman bondage number $b_{iR}(G)$ of a graph $G$ having at least\n\none component of order at least three, defined as the smallest size of set of\n\nedges $F\\subseteq E(G)$ for which $i_{R}(G-F)>i_{R}(G)$. We begin by showing\n\nthat the decision problem associated with the independent Roman\n\nbondage problem is NP-hard for bipartite graphs.\n\nThen various upper bounds on $b_{iR}(G)$ are established as well\n\nas exact values on it for some special graphs. In particular, for trees $T$\n\nof order at least three, it is shown that $b_{iR}(T)\\leq3,$\n\nwhile for connected planar graphs the upper bounds are in terms of\n\nthe maximum degree with refinements depending on the girth of the graph.","PeriodicalId":20872,"journal":{"name":"RAIRO Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Independent Roman bondage of graphs\",\"authors\":\"S. Kosari, J. Amjadi, M. Chellali, S. M. Sheikholeslami\",\"doi\":\"10.1051/ro/2023017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An independent Roman dominating function (IRD-function) on a graph $G$ is a\\n\\nfunction $f:V(G)\\\\rightarrow\\\\{0,1,2\\\\}$ satisfying the conditions that (i) every\\n\\nvertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which\\n\\n$f(v)=2$, and (ii) the set of all vertices assigned non-zero\\n\\nvalues under $f$ is independent. The weight of an IRD-function is\\n\\nthe sum of its function values over all vertices, and the independent Roman\\n\\ndomination number $i_{R}(G)$ of $G$ is the minimum weight of an\\n\\nIRD-function on $G$. In this paper, we initiate the study of the independent\\n\\nRoman bondage number $b_{iR}(G)$ of a graph $G$ having at least\\n\\none component of order at least three, defined as the smallest size of set of\\n\\nedges $F\\\\subseteq E(G)$ for which $i_{R}(G-F)>i_{R}(G)$. We begin by showing\\n\\nthat the decision problem associated with the independent Roman\\n\\nbondage problem is NP-hard for bipartite graphs.\\n\\nThen various upper bounds on $b_{iR}(G)$ are established as well\\n\\nas exact values on it for some special graphs. In particular, for trees $T$\\n\\nof order at least three, it is shown that $b_{iR}(T)\\\\leq3,$\\n\\nwhile for connected planar graphs the upper bounds are in terms of\\n\\nthe maximum degree with refinements depending on the girth of the graph.\",\"PeriodicalId\":20872,\"journal\":{\"name\":\"RAIRO Oper. Res.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ro/2023017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ro/2023017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图上独立的罗马支配函数(ird函数) $G$ 它的函数 $f:V(G)\rightarrow\{0,1,2\}$ 满足(i)每个顶点 $u$ 为了什么? $f(u)=0$ 至少与一个顶点相邻 $v$ 为了什么?$f(v)=2$(ii)下赋值为非零的所有顶点的集合 $f$ 是独立的。ird函数的权重是其所有顶点上的函数值和独立的罗马统治数的总和 $i_{R}(G)$ 的 $G$ 是否开启了ird功能的最小重量 $G$. 本文开始了独立罗马束缚数的研究 $b_{iR}(G)$ 图形的 $G$ 至少有一个分量的阶数至少为3的,定义为边缘集合的最小大小 $F\subseteq E(G)$ 为了什么? $i_{R}(G-F)>i_{R}(G)$. 我们首先证明了与独立罗曼束缚问题相关的决策问题对于二部图来说是np困难的。然后是各种上界 $b_{iR}(G)$ 对于一些特殊的图,也建立了它的精确值。特别是对于树木 $T$至少有三阶,可以看出 $b_{iR}(T)\leq3,$而对于连通的平面图,上界是根据图的周长进行细化的最大度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Independent Roman bondage of graphs
An independent Roman dominating function (IRD-function) on a graph $G$ is a function $f:V(G)\rightarrow\{0,1,2\}$ satisfying the conditions that (i) every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$, and (ii) the set of all vertices assigned non-zero values under $f$ is independent. The weight of an IRD-function is the sum of its function values over all vertices, and the independent Roman domination number $i_{R}(G)$ of $G$ is the minimum weight of an IRD-function on $G$. In this paper, we initiate the study of the independent Roman bondage number $b_{iR}(G)$ of a graph $G$ having at least one component of order at least three, defined as the smallest size of set of edges $F\subseteq E(G)$ for which $i_{R}(G-F)>i_{R}(G)$. We begin by showing that the decision problem associated with the independent Roman bondage problem is NP-hard for bipartite graphs. Then various upper bounds on $b_{iR}(G)$ are established as well as exact values on it for some special graphs. In particular, for trees $T$ of order at least three, it is shown that $b_{iR}(T)\leq3,$ while for connected planar graphs the upper bounds are in terms of the maximum degree with refinements depending on the girth of the graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信