关于二维noether半群和一个主要理想定理

Kojiro Sato, Ryuiki Matsuda
{"title":"关于二维noether半群和一个主要理想定理","authors":"Kojiro Sato, Ryuiki Matsuda","doi":"10.5036/MJIU.31.29","DOIUrl":null,"url":null,"abstract":"Let D be a Noetlerian integral domain with the integral closure D, and K the quotient field of D. The Krull-Akizuki theorem states that , if dim (D) =1, then any ring between D and K is Noetherian and its dimension is at most 1. The Mori-Nagata theorem states that D is a Krull ring for any Noetherian domain D. Moreover, Nagata proved that, if D is of dimension 2 , then D is Noetherian (cf. [N, (33.12) Theorem). In [M1] we proved the Krull-Akizuki theorem for semigroups. In [M2] we proved the Mori-Nagata theorem for semigroups . The aims of this paper are to prove the following Theorem and to answer to the following question. THEOREM. Let S be a 2-dimensional Noetherian semigroup . Then the integral closure S of S is a Noetherian semigroup.","PeriodicalId":18362,"journal":{"name":"Mathematical Journal of Ibaraki University","volume":"9 1","pages":"29-31"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On 2-dimensional Noetherian semigroups and a principal ideal theorem\",\"authors\":\"Kojiro Sato, Ryuiki Matsuda\",\"doi\":\"10.5036/MJIU.31.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let D be a Noetlerian integral domain with the integral closure D, and K the quotient field of D. The Krull-Akizuki theorem states that , if dim (D) =1, then any ring between D and K is Noetherian and its dimension is at most 1. The Mori-Nagata theorem states that D is a Krull ring for any Noetherian domain D. Moreover, Nagata proved that, if D is of dimension 2 , then D is Noetherian (cf. [N, (33.12) Theorem). In [M1] we proved the Krull-Akizuki theorem for semigroups. In [M2] we proved the Mori-Nagata theorem for semigroups . The aims of this paper are to prove the following Theorem and to answer to the following question. THEOREM. Let S be a 2-dimensional Noetherian semigroup . Then the integral closure S of S is a Noetherian semigroup.\",\"PeriodicalId\":18362,\"journal\":{\"name\":\"Mathematical Journal of Ibaraki University\",\"volume\":\"9 1\",\"pages\":\"29-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Journal of Ibaraki University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5036/MJIU.31.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Journal of Ibaraki University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/MJIU.31.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设D是一个积分闭包为D的noeterian积分域,K是D的商域。Krull-Akizuki定理指出,如果dim (D) =1,则D和K之间的任何环都是noeterian环,且其维数不超过1。Mori-Nagata定理证明了D对于任何noether域D都是一个Krull环,并且Nagata证明了,如果D是2维,则D是noether域(参见[N,(33.12)定理)。在[M1]中,我们证明了半群的Krull-Akizuki定理。在[M2]中,我们证明了半群的Mori-Nagata定理。本文的目的是证明以下定理并回答以下问题。定理。设S是一个二维诺瑟半群。那么S的积分闭包S是一个noether半群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On 2-dimensional Noetherian semigroups and a principal ideal theorem
Let D be a Noetlerian integral domain with the integral closure D, and K the quotient field of D. The Krull-Akizuki theorem states that , if dim (D) =1, then any ring between D and K is Noetherian and its dimension is at most 1. The Mori-Nagata theorem states that D is a Krull ring for any Noetherian domain D. Moreover, Nagata proved that, if D is of dimension 2 , then D is Noetherian (cf. [N, (33.12) Theorem). In [M1] we proved the Krull-Akizuki theorem for semigroups. In [M2] we proved the Mori-Nagata theorem for semigroups . The aims of this paper are to prove the following Theorem and to answer to the following question. THEOREM. Let S be a 2-dimensional Noetherian semigroup . Then the integral closure S of S is a Noetherian semigroup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信