基于机器学习的Satir模型应对姿态分类问题研究

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xi Wang, Yu Zhao, Guangping Zeng, Peng Xiao, Zhiliang Wang
{"title":"基于机器学习的Satir模型应对姿态分类问题研究","authors":"Xi Wang, Yu Zhao, Guangping Zeng, Peng Xiao, Zhiliang Wang","doi":"10.1080/0952813X.2021.1960628","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper applies machine learning technology to the Satir theory model and intelligently classifies the communication stances of the second layer according to the language and behaviour information of the first layer. We arranged a large number of dialogical language materials from a TV interview programme and used the ICTCLAS Chinese word segmentation system to create a ‘psychological consultation database’. We construct the word training set by part of making use of speech filtering and text word vectorisation, and construct the semantic training set by annotating the original data with the Satir model. These two sets form the Satir communication posture classification training set. Experimental results show that the success rate of classification of four inconsistent coping stances reached 70.37%, 75.92%, 83.33%, and 77.78%.","PeriodicalId":15677,"journal":{"name":"Journal of Experimental & Theoretical Artificial Intelligence","volume":"83 1","pages":"129 - 149"},"PeriodicalIF":1.7000,"publicationDate":"2022-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the classification problem of the coping stances in the Satir model based on machine learning\",\"authors\":\"Xi Wang, Yu Zhao, Guangping Zeng, Peng Xiao, Zhiliang Wang\",\"doi\":\"10.1080/0952813X.2021.1960628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This paper applies machine learning technology to the Satir theory model and intelligently classifies the communication stances of the second layer according to the language and behaviour information of the first layer. We arranged a large number of dialogical language materials from a TV interview programme and used the ICTCLAS Chinese word segmentation system to create a ‘psychological consultation database’. We construct the word training set by part of making use of speech filtering and text word vectorisation, and construct the semantic training set by annotating the original data with the Satir model. These two sets form the Satir communication posture classification training set. Experimental results show that the success rate of classification of four inconsistent coping stances reached 70.37%, 75.92%, 83.33%, and 77.78%.\",\"PeriodicalId\":15677,\"journal\":{\"name\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"volume\":\"83 1\",\"pages\":\"129 - 149\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0952813X.2021.1960628\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Theoretical Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0952813X.2021.1960628","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文将机器学习技术应用到Satir理论模型中,根据第一层的语言和行为信息对第二层的交流立场进行智能分类。我们从一个电视访谈节目中整理了大量的对话语言材料,并使用ICTCLAS中文分词系统创建了一个“心理咨询数据库”。利用语音滤波和文本词向量化的方法构造词训练集,利用Satir模型对原始数据进行标注,构造语义训练集。这两个集合构成了Satir通信姿势分类训练集。实验结果表明,四种不一致应对姿态的分类成功率分别为70.37%、75.92%、83.33%和77.78%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the classification problem of the coping stances in the Satir model based on machine learning
ABSTRACT This paper applies machine learning technology to the Satir theory model and intelligently classifies the communication stances of the second layer according to the language and behaviour information of the first layer. We arranged a large number of dialogical language materials from a TV interview programme and used the ICTCLAS Chinese word segmentation system to create a ‘psychological consultation database’. We construct the word training set by part of making use of speech filtering and text word vectorisation, and construct the semantic training set by annotating the original data with the Satir model. These two sets form the Satir communication posture classification training set. Experimental results show that the success rate of classification of four inconsistent coping stances reached 70.37%, 75.92%, 83.33%, and 77.78%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
4.50%
发文量
89
审稿时长
>12 weeks
期刊介绍: Journal of Experimental & Theoretical Artificial Intelligence (JETAI) is a world leading journal dedicated to publishing high quality, rigorously reviewed, original papers in artificial intelligence (AI) research. The journal features work in all subfields of AI research and accepts both theoretical and applied research. Topics covered include, but are not limited to, the following: • cognitive science • games • learning • knowledge representation • memory and neural system modelling • perception • problem-solving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信