超几何权重正交多项式递推系数的微分与差分方程及第六届painlevleve方程的Bäcklund变换

Pub Date : 2020-09-24 DOI:10.1142/s2010326321500295
Jie Hu, G. Filipuk, Yang Chen
{"title":"超几何权重正交多项式递推系数的微分与差分方程及第六届painlevleve方程的Bäcklund变换","authors":"Jie Hu, G. Filipuk, Yang Chen","doi":"10.1142/s2010326321500295","DOIUrl":null,"url":null,"abstract":"It is known from [G. Filipuk and W. Van Assche, Discrete orthogonal polynomials with hypergeometric weights and Painlevé VI, Symmetry Integr. Geom. Methods Appl. 14 (2018), Article ID: 088, 19 pp.] that the recurrence coefficients of discrete orthogonal polynomials on the nonnegative integers with hypergeometric weights satisfy a system of nonlinear difference equations. There is also a connection to the solutions of the [Formula: see text]-form of the sixth Painlevé equation (one of the parameters of the weights being the independent variable in the differential equation) [G. Filipuk and W. Van Assche, Discrete orthogonal polynomials with hypergeometric weights and Painlevé VI, Symmetry Integr. Geom. Methods Appl. 14 (2018), Article ID: 088, 19 pp.]. In this paper, we derive a second-order nonlinear difference equation from the system and present explicit formulas showing how this difference equation arises from the Bäcklund transformations of the sixth Painlevé equation. We also present an alternative way to derive the connection between the recurrence coefficients and the solutions of the sixth Painlevé equation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Differential and difference equations for recurrence coefficients of orthogonal polynomials with hypergeometric weights and Bäcklund transformations of the sixth Painlevé equation\",\"authors\":\"Jie Hu, G. Filipuk, Yang Chen\",\"doi\":\"10.1142/s2010326321500295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known from [G. Filipuk and W. Van Assche, Discrete orthogonal polynomials with hypergeometric weights and Painlevé VI, Symmetry Integr. Geom. Methods Appl. 14 (2018), Article ID: 088, 19 pp.] that the recurrence coefficients of discrete orthogonal polynomials on the nonnegative integers with hypergeometric weights satisfy a system of nonlinear difference equations. There is also a connection to the solutions of the [Formula: see text]-form of the sixth Painlevé equation (one of the parameters of the weights being the independent variable in the differential equation) [G. Filipuk and W. Van Assche, Discrete orthogonal polynomials with hypergeometric weights and Painlevé VI, Symmetry Integr. Geom. Methods Appl. 14 (2018), Article ID: 088, 19 pp.]. In this paper, we derive a second-order nonlinear difference equation from the system and present explicit formulas showing how this difference equation arises from the Bäcklund transformations of the sixth Painlevé equation. We also present an alternative way to derive the connection between the recurrence coefficients and the solutions of the sixth Painlevé equation.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326321500295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326321500295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

从[G.](1)具有超几何权值的离散正交多项式,对称积分。几何学。方法[j] .中文信息学报,2014,36 (1):1 - 2 .][公式:见文本]的第六种painlev方程的形式(权重的一个参数是微分方程中的自变量)[G]的解也有联系。(1)具有超几何权值的离散正交多项式,对称积分。几何学。[j].中国科学:自然科学版,2018,第1期,第6页。在本文中,我们从系统中导出了一个二阶非线性差分方程,并给出了该差分方程如何由第六阶painlevleve方程的Bäcklund变换产生的显式公式。我们还提出了另一种方法来推导递推系数与第六阶painlevevlev方程解之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Differential and difference equations for recurrence coefficients of orthogonal polynomials with hypergeometric weights and Bäcklund transformations of the sixth Painlevé equation
It is known from [G. Filipuk and W. Van Assche, Discrete orthogonal polynomials with hypergeometric weights and Painlevé VI, Symmetry Integr. Geom. Methods Appl. 14 (2018), Article ID: 088, 19 pp.] that the recurrence coefficients of discrete orthogonal polynomials on the nonnegative integers with hypergeometric weights satisfy a system of nonlinear difference equations. There is also a connection to the solutions of the [Formula: see text]-form of the sixth Painlevé equation (one of the parameters of the weights being the independent variable in the differential equation) [G. Filipuk and W. Van Assche, Discrete orthogonal polynomials with hypergeometric weights and Painlevé VI, Symmetry Integr. Geom. Methods Appl. 14 (2018), Article ID: 088, 19 pp.]. In this paper, we derive a second-order nonlinear difference equation from the system and present explicit formulas showing how this difference equation arises from the Bäcklund transformations of the sixth Painlevé equation. We also present an alternative way to derive the connection between the recurrence coefficients and the solutions of the sixth Painlevé equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信