PU中的短路径(2)

Zachary Stier
{"title":"PU中的短路径(2)","authors":"Zachary Stier","doi":"10.26421/QIC21.9-10-3","DOIUrl":null,"url":null,"abstract":"Parzanchevski and Sarnak recently adapted an algorithm of Ross and Selinger for factorization of PU(2)-diagonal elements to within distance $\\varepsilon$ into an efficient probabilistic algorithm for any PU(2)-element, using at most $3\\log_p\\frac{1}{\\varepsilon^3}$ factors from certain well-chosen sets. The Clifford+$T$ gates are one such set arising from $p=2$. In that setting, we leverage recent work of Carvalho Pinto and Petit to improve this to $\\frac{7}{3}\\log_2\\frac{1}{\\varepsilon^3}$, and implement the algorithm in Haskell.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"26 1","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Short paths in PU(2)\",\"authors\":\"Zachary Stier\",\"doi\":\"10.26421/QIC21.9-10-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parzanchevski and Sarnak recently adapted an algorithm of Ross and Selinger for factorization of PU(2)-diagonal elements to within distance $\\\\varepsilon$ into an efficient probabilistic algorithm for any PU(2)-element, using at most $3\\\\log_p\\\\frac{1}{\\\\varepsilon^3}$ factors from certain well-chosen sets. The Clifford+$T$ gates are one such set arising from $p=2$. In that setting, we leverage recent work of Carvalho Pinto and Petit to improve this to $\\\\frac{7}{3}\\\\log_2\\\\frac{1}{\\\\varepsilon^3}$, and implement the algorithm in Haskell.\",\"PeriodicalId\":20904,\"journal\":{\"name\":\"Quantum Inf. Comput.\",\"volume\":\"26 1\",\"pages\":\"2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26421/QIC21.9-10-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/QIC21.9-10-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Parzanchevski和Sarnak最近将Ross和Selinger的PU(2)-对角线元素分解到距离$\varepsilon$以内的算法改编为一个有效的概率算法,用于任何PU(2)-元素,最多使用来自某些精心选择的集合的$3\log_p\frac{1}{\varepsilon^3}$个因子。Clifford+ $T$门就是这样一个从$p=2$产生的集合。在这种情况下,我们利用Carvalho Pinto和Petit最近的工作将其改进为$\frac{7}{3}\log_2\frac{1}{\varepsilon^3}$,并在Haskell中实现该算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short paths in PU(2)
Parzanchevski and Sarnak recently adapted an algorithm of Ross and Selinger for factorization of PU(2)-diagonal elements to within distance $\varepsilon$ into an efficient probabilistic algorithm for any PU(2)-element, using at most $3\log_p\frac{1}{\varepsilon^3}$ factors from certain well-chosen sets. The Clifford+$T$ gates are one such set arising from $p=2$. In that setting, we leverage recent work of Carvalho Pinto and Petit to improve this to $\frac{7}{3}\log_2\frac{1}{\varepsilon^3}$, and implement the algorithm in Haskell.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信