不同机器学习算法对急性肌电信号手势数据集的性能评估

Jeevanshi Sharma, Rajat Maheshwari, S. Khan, Abid Ali Khan
{"title":"不同机器学习算法对急性肌电信号手势数据集的性能评估","authors":"Jeevanshi Sharma, Rajat Maheshwari, S. Khan, Abid Ali Khan","doi":"10.36548/jei.2022.3.007","DOIUrl":null,"url":null,"abstract":"In this paper, different machine learning and tabular learning classification algorithms have been studied and compared on the acute hand-gesture Electromyogram dataset. The comparative study between different models such as KNN, RandomForest, TabNet, etc. depicts that small datasets can achieve high-level accuracy along with the intuition of high-performing neural net architectures through tabular learning approaches like TabNet. The performed analysis produced an accuracy of 99.9% through TabNet while other conventional classifiers also gave satisfactory results with KNN being at highest achieving accuracy of 97.8 %.","PeriodicalId":74231,"journal":{"name":"Multiscale multimodal medical imaging : Third International Workshop, MMMI 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022, proceedings","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluating Performance of Different Machine Learning Algorithms for the Acute EMG Hand Gesture Datasets\",\"authors\":\"Jeevanshi Sharma, Rajat Maheshwari, S. Khan, Abid Ali Khan\",\"doi\":\"10.36548/jei.2022.3.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, different machine learning and tabular learning classification algorithms have been studied and compared on the acute hand-gesture Electromyogram dataset. The comparative study between different models such as KNN, RandomForest, TabNet, etc. depicts that small datasets can achieve high-level accuracy along with the intuition of high-performing neural net architectures through tabular learning approaches like TabNet. The performed analysis produced an accuracy of 99.9% through TabNet while other conventional classifiers also gave satisfactory results with KNN being at highest achieving accuracy of 97.8 %.\",\"PeriodicalId\":74231,\"journal\":{\"name\":\"Multiscale multimodal medical imaging : Third International Workshop, MMMI 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022, proceedings\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale multimodal medical imaging : Third International Workshop, MMMI 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022, proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36548/jei.2022.3.007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale multimodal medical imaging : Third International Workshop, MMMI 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022, proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/jei.2022.3.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文对不同的机器学习和表格学习分类算法在急性手势肌电图数据集上进行了研究和比较。KNN、RandomForest、TabNet等不同模型之间的比较研究表明,通过TabNet等表格学习方法,小数据集可以实现高水平的准确性,同时也具有高性能神经网络架构的直觉性。通过TabNet进行的分析产生了99.9%的准确率,而其他传统分类器也给出了令人满意的结果,KNN最高达到97.8%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating Performance of Different Machine Learning Algorithms for the Acute EMG Hand Gesture Datasets
In this paper, different machine learning and tabular learning classification algorithms have been studied and compared on the acute hand-gesture Electromyogram dataset. The comparative study between different models such as KNN, RandomForest, TabNet, etc. depicts that small datasets can achieve high-level accuracy along with the intuition of high-performing neural net architectures through tabular learning approaches like TabNet. The performed analysis produced an accuracy of 99.9% through TabNet while other conventional classifiers also gave satisfactory results with KNN being at highest achieving accuracy of 97.8 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信