{"title":"多视角空间数据质量控制方法综述","authors":"Danling Chen","doi":"10.23977/geors.2022.050104","DOIUrl":null,"url":null,"abstract":": Spatial data is the core and operation object of geographic information system (GIS). The quality of spatial data determines the application of GIS and the effectiveness of decision-making to a great extent. This article introduces two important types of spatial data, vector data and raster data. Then, this paper discusses the uncertainty and sources of errors in spatial data, and discusses the methods of checking and preventing uncertainty and errors from the aspects and processes of digitization, so as to ensure the quality of spatial data. Finally, this paper explores cutting-edge approaches to improving spatial data quality, including the Area preserving method for improved categorical raster resampling, and using hierarchical grid index to detect and correct errors in vector elevation data. By studying effective data quality control methods, the quality of spatial data in GIS can be guaranteed, and the basic guarantee for the wide application and development of geographic information science can be provided.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"7 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reviewing Methods for Controlling Spatial Data Quality from Multiple Perspectives\",\"authors\":\"Danling Chen\",\"doi\":\"10.23977/geors.2022.050104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Spatial data is the core and operation object of geographic information system (GIS). The quality of spatial data determines the application of GIS and the effectiveness of decision-making to a great extent. This article introduces two important types of spatial data, vector data and raster data. Then, this paper discusses the uncertainty and sources of errors in spatial data, and discusses the methods of checking and preventing uncertainty and errors from the aspects and processes of digitization, so as to ensure the quality of spatial data. Finally, this paper explores cutting-edge approaches to improving spatial data quality, including the Area preserving method for improved categorical raster resampling, and using hierarchical grid index to detect and correct errors in vector elevation data. By studying effective data quality control methods, the quality of spatial data in GIS can be guaranteed, and the basic guarantee for the wide application and development of geographic information science can be provided.\",\"PeriodicalId\":13046,\"journal\":{\"name\":\"IEEE Geoscience and Remote Sensing Letters\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Geoscience and Remote Sensing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.23977/geors.2022.050104\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.23977/geors.2022.050104","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Reviewing Methods for Controlling Spatial Data Quality from Multiple Perspectives
: Spatial data is the core and operation object of geographic information system (GIS). The quality of spatial data determines the application of GIS and the effectiveness of decision-making to a great extent. This article introduces two important types of spatial data, vector data and raster data. Then, this paper discusses the uncertainty and sources of errors in spatial data, and discusses the methods of checking and preventing uncertainty and errors from the aspects and processes of digitization, so as to ensure the quality of spatial data. Finally, this paper explores cutting-edge approaches to improving spatial data quality, including the Area preserving method for improved categorical raster resampling, and using hierarchical grid index to detect and correct errors in vector elevation data. By studying effective data quality control methods, the quality of spatial data in GIS can be guaranteed, and the basic guarantee for the wide application and development of geographic information science can be provided.
期刊介绍:
IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.