Bradley-Terry模型饱和优化设计的半代数几何

Thomas Kahle, Frank Röttger, R. Schwabe
{"title":"Bradley-Terry模型饱和优化设计的半代数几何","authors":"Thomas Kahle, Frank Röttger, R. Schwabe","doi":"10.2140/astat.2021.12.97","DOIUrl":null,"url":null,"abstract":"Optimal design theory for nonlinear regression studies local optimality on a given design space. We identify designs for the Bradley--Terry paired comparison model with small undirected graphs and prove that every saturated D-optimal design is represented by a path. We discuss the case of four alternatives in detail and derive explicit polynomial inequality descriptions for optimality regions in parameter space. Using these regions, for each point in parameter space we can prescribe a D-optimal design.","PeriodicalId":41066,"journal":{"name":"Journal of Algebraic Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The semialgebraic geometry of saturated\\noptimal designs for the Bradley–Terry model\",\"authors\":\"Thomas Kahle, Frank Röttger, R. Schwabe\",\"doi\":\"10.2140/astat.2021.12.97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal design theory for nonlinear regression studies local optimality on a given design space. We identify designs for the Bradley--Terry paired comparison model with small undirected graphs and prove that every saturated D-optimal design is represented by a path. We discuss the case of four alternatives in detail and derive explicit polynomial inequality descriptions for optimality regions in parameter space. Using these regions, for each point in parameter space we can prescribe a D-optimal design.\",\"PeriodicalId\":41066,\"journal\":{\"name\":\"Journal of Algebraic Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/astat.2021.12.97\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/astat.2021.12.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

非线性回归优化设计理论研究给定设计空间上的局部最优性。我们用小无向图识别了Bradley- Terry配对比较模型的设计,并证明了每个饱和d -最优设计都由一条路径表示。我们详细讨论了四种备选方案的情况,并推导出参数空间中最优区域的显式多项式不等式描述。利用这些区域,对于参数空间中的每个点,我们可以规定一个d -最优设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The semialgebraic geometry of saturated optimal designs for the Bradley–Terry model
Optimal design theory for nonlinear regression studies local optimality on a given design space. We identify designs for the Bradley--Terry paired comparison model with small undirected graphs and prove that every saturated D-optimal design is represented by a path. We discuss the case of four alternatives in detail and derive explicit polynomial inequality descriptions for optimality regions in parameter space. Using these regions, for each point in parameter space we can prescribe a D-optimal design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebraic Statistics
Journal of Algebraic Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信