{"title":"离散随机矩阵的稀疏恢复性质","authors":"Asaf Ferber, A. Sah, Mehtaab Sawhney, Yizhe Zhu","doi":"10.1017/S0963548322000256","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>Motivated by problems from compressed sensing, we determine the threshold behaviour of a random <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000256_inline1.png\" />\n\t\t<jats:tex-math>\n$n\\times d \\pm 1$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> matrix <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000256_inline2.png\" />\n\t\t<jats:tex-math>\n$M_{n,d}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> with respect to the property ‘every <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000256_inline3.png\" />\n\t\t<jats:tex-math>\n$s$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> columns are linearly independent’. In particular, we show that for every <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000256_inline4.png\" />\n\t\t<jats:tex-math>\n$0\\lt \\delta \\lt 1$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000256_inline5.png\" />\n\t\t<jats:tex-math>\n$s=(1-\\delta )n$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, if <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000256_inline6.png\" />\n\t\t<jats:tex-math>\n$d\\leq n^{1+1/2(1-\\delta )-o(1)}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> then with high probability every <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000256_inline7.png\" />\n\t\t<jats:tex-math>\n$s$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> columns of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000256_inline8.png\" />\n\t\t<jats:tex-math>\n$M_{n,d}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> are linearly independent, and if <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000256_inline9.png\" />\n\t\t<jats:tex-math>\n$d\\geq n^{1+1/2(1-\\delta )+o(1)}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> then with high probability there are some <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000256_inline10.png\" />\n\t\t<jats:tex-math>\n$s$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> linearly dependent columns.</jats:p>","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse recovery properties of discrete random matrices\",\"authors\":\"Asaf Ferber, A. Sah, Mehtaab Sawhney, Yizhe Zhu\",\"doi\":\"10.1017/S0963548322000256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\t <jats:p>Motivated by problems from compressed sensing, we determine the threshold behaviour of a random <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000256_inline1.png\\\" />\\n\\t\\t<jats:tex-math>\\n$n\\\\times d \\\\pm 1$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> matrix <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000256_inline2.png\\\" />\\n\\t\\t<jats:tex-math>\\n$M_{n,d}$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> with respect to the property ‘every <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000256_inline3.png\\\" />\\n\\t\\t<jats:tex-math>\\n$s$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> columns are linearly independent’. In particular, we show that for every <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000256_inline4.png\\\" />\\n\\t\\t<jats:tex-math>\\n$0\\\\lt \\\\delta \\\\lt 1$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> and <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000256_inline5.png\\\" />\\n\\t\\t<jats:tex-math>\\n$s=(1-\\\\delta )n$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>, if <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000256_inline6.png\\\" />\\n\\t\\t<jats:tex-math>\\n$d\\\\leq n^{1+1/2(1-\\\\delta )-o(1)}$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> then with high probability every <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000256_inline7.png\\\" />\\n\\t\\t<jats:tex-math>\\n$s$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> columns of <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000256_inline8.png\\\" />\\n\\t\\t<jats:tex-math>\\n$M_{n,d}$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> are linearly independent, and if <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000256_inline9.png\\\" />\\n\\t\\t<jats:tex-math>\\n$d\\\\geq n^{1+1/2(1-\\\\delta )+o(1)}$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> then with high probability there are some <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000256_inline10.png\\\" />\\n\\t\\t<jats:tex-math>\\n$s$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> linearly dependent columns.</jats:p>\",\"PeriodicalId\":10513,\"journal\":{\"name\":\"Combinatorics, Probability & Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability & Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0963548322000256\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0963548322000256","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Sparse recovery properties of discrete random matrices
Motivated by problems from compressed sensing, we determine the threshold behaviour of a random
$n\times d \pm 1$
matrix
$M_{n,d}$
with respect to the property ‘every
$s$
columns are linearly independent’. In particular, we show that for every
$0\lt \delta \lt 1$
and
$s=(1-\delta )n$
, if
$d\leq n^{1+1/2(1-\delta )-o(1)}$
then with high probability every
$s$
columns of
$M_{n,d}$
are linearly independent, and if
$d\geq n^{1+1/2(1-\delta )+o(1)}$
then with high probability there are some
$s$
linearly dependent columns.
期刊介绍:
Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.