离散随机矩阵的稀疏恢复性质

IF 0.9 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Asaf Ferber, A. Sah, Mehtaab Sawhney, Yizhe Zhu
{"title":"离散随机矩阵的稀疏恢复性质","authors":"Asaf Ferber, A. Sah, Mehtaab Sawhney, Yizhe Zhu","doi":"10.1017/S0963548322000256","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>Motivated by problems from compressed sensing, we determine the threshold behaviour of a random <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000256_inline1.png\" />\n\t\t<jats:tex-math>\n$n\\times d \\pm 1$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> matrix <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000256_inline2.png\" />\n\t\t<jats:tex-math>\n$M_{n,d}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> with respect to the property ‘every <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000256_inline3.png\" />\n\t\t<jats:tex-math>\n$s$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> columns are linearly independent’. In particular, we show that for every <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000256_inline4.png\" />\n\t\t<jats:tex-math>\n$0\\lt \\delta \\lt 1$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000256_inline5.png\" />\n\t\t<jats:tex-math>\n$s=(1-\\delta )n$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, if <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000256_inline6.png\" />\n\t\t<jats:tex-math>\n$d\\leq n^{1+1/2(1-\\delta )-o(1)}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> then with high probability every <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000256_inline7.png\" />\n\t\t<jats:tex-math>\n$s$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> columns of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000256_inline8.png\" />\n\t\t<jats:tex-math>\n$M_{n,d}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> are linearly independent, and if <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000256_inline9.png\" />\n\t\t<jats:tex-math>\n$d\\geq n^{1+1/2(1-\\delta )+o(1)}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> then with high probability there are some <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000256_inline10.png\" />\n\t\t<jats:tex-math>\n$s$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> linearly dependent columns.</jats:p>","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse recovery properties of discrete random matrices\",\"authors\":\"Asaf Ferber, A. Sah, Mehtaab Sawhney, Yizhe Zhu\",\"doi\":\"10.1017/S0963548322000256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\t <jats:p>Motivated by problems from compressed sensing, we determine the threshold behaviour of a random <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000256_inline1.png\\\" />\\n\\t\\t<jats:tex-math>\\n$n\\\\times d \\\\pm 1$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> matrix <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000256_inline2.png\\\" />\\n\\t\\t<jats:tex-math>\\n$M_{n,d}$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> with respect to the property ‘every <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000256_inline3.png\\\" />\\n\\t\\t<jats:tex-math>\\n$s$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> columns are linearly independent’. In particular, we show that for every <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000256_inline4.png\\\" />\\n\\t\\t<jats:tex-math>\\n$0\\\\lt \\\\delta \\\\lt 1$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> and <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000256_inline5.png\\\" />\\n\\t\\t<jats:tex-math>\\n$s=(1-\\\\delta )n$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>, if <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000256_inline6.png\\\" />\\n\\t\\t<jats:tex-math>\\n$d\\\\leq n^{1+1/2(1-\\\\delta )-o(1)}$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> then with high probability every <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000256_inline7.png\\\" />\\n\\t\\t<jats:tex-math>\\n$s$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> columns of <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000256_inline8.png\\\" />\\n\\t\\t<jats:tex-math>\\n$M_{n,d}$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> are linearly independent, and if <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000256_inline9.png\\\" />\\n\\t\\t<jats:tex-math>\\n$d\\\\geq n^{1+1/2(1-\\\\delta )+o(1)}$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> then with high probability there are some <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548322000256_inline10.png\\\" />\\n\\t\\t<jats:tex-math>\\n$s$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> linearly dependent columns.</jats:p>\",\"PeriodicalId\":10513,\"journal\":{\"name\":\"Combinatorics, Probability & Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability & Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0963548322000256\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0963548322000256","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在压缩感知问题的激励下,我们确定了随机$n\times d \pm 1$矩阵$M_{n,d}$关于“每个$s$列都是线性独立的”属性的阈值行为。特别地,我们证明了对于每一个$0\lt \delta \lt 1$和$s=(1-\delta )n$,如果$d\leq n^{1+1/2(1-\delta )-o(1)}$那么有很大概率$M_{n,d}$的每一个$s$列都是线性无关的,如果$d\geq n^{1+1/2(1-\delta )+o(1)}$那么有很大概率有一些$s$线性相关的列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse recovery properties of discrete random matrices
Motivated by problems from compressed sensing, we determine the threshold behaviour of a random $n\times d \pm 1$ matrix $M_{n,d}$ with respect to the property ‘every $s$ columns are linearly independent’. In particular, we show that for every $0\lt \delta \lt 1$ and $s=(1-\delta )n$ , if $d\leq n^{1+1/2(1-\delta )-o(1)}$ then with high probability every $s$ columns of $M_{n,d}$ are linearly independent, and if $d\geq n^{1+1/2(1-\delta )+o(1)}$ then with high probability there are some $s$ linearly dependent columns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorics, Probability & Computing
Combinatorics, Probability & Computing 数学-计算机:理论方法
CiteScore
2.40
自引率
11.10%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信