关于PG(n, q)点线关联图中的分解集

D. Bartoli, G. Kiss, S. Marcugini, F. Pambianco
{"title":"关于PG(n, q)点线关联图中的分解集","authors":"D. Bartoli, G. Kiss, S. Marcugini, F. Pambianco","doi":"10.26493/1855-3974.2125.7b0","DOIUrl":null,"url":null,"abstract":"Lower and upper bounds on the size of resolving sets and semi-resolving sets for the point-line incidence graph of the finite projective space P G ( n ,  q ) are presented. It is proved that if n  > 2 is fixed, then the metric dimension of the graph is asymptotically 2 q n  − 1 .","PeriodicalId":8402,"journal":{"name":"Ars Math. Contemp.","volume":"1 1","pages":"231-247"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On resolving sets in the point-line incidence graph of PG(n, q)\",\"authors\":\"D. Bartoli, G. Kiss, S. Marcugini, F. Pambianco\",\"doi\":\"10.26493/1855-3974.2125.7b0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lower and upper bounds on the size of resolving sets and semi-resolving sets for the point-line incidence graph of the finite projective space P G ( n ,  q ) are presented. It is proved that if n  > 2 is fixed, then the metric dimension of the graph is asymptotically 2 q n  − 1 .\",\"PeriodicalId\":8402,\"journal\":{\"name\":\"Ars Math. Contemp.\",\"volume\":\"1 1\",\"pages\":\"231-247\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ars Math. Contemp.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/1855-3974.2125.7b0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Math. Contemp.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/1855-3974.2125.7b0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

给出了有限射影空间pg (n, q)的点线关联图的解析集和半解析集大小的下界和上界。证明了如果n > 2是固定的,则图的度量维数渐近为2q n−1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On resolving sets in the point-line incidence graph of PG(n, q)
Lower and upper bounds on the size of resolving sets and semi-resolving sets for the point-line incidence graph of the finite projective space P G ( n ,  q ) are presented. It is proved that if n  > 2 is fixed, then the metric dimension of the graph is asymptotically 2 q n  − 1 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信