{"title":"关于PG(n, q)点线关联图中的分解集","authors":"D. Bartoli, G. Kiss, S. Marcugini, F. Pambianco","doi":"10.26493/1855-3974.2125.7b0","DOIUrl":null,"url":null,"abstract":"Lower and upper bounds on the size of resolving sets and semi-resolving sets for the point-line incidence graph of the finite projective space P G ( n , q ) are presented. It is proved that if n > 2 is fixed, then the metric dimension of the graph is asymptotically 2 q n − 1 .","PeriodicalId":8402,"journal":{"name":"Ars Math. Contemp.","volume":"1 1","pages":"231-247"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On resolving sets in the point-line incidence graph of PG(n, q)\",\"authors\":\"D. Bartoli, G. Kiss, S. Marcugini, F. Pambianco\",\"doi\":\"10.26493/1855-3974.2125.7b0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lower and upper bounds on the size of resolving sets and semi-resolving sets for the point-line incidence graph of the finite projective space P G ( n , q ) are presented. It is proved that if n > 2 is fixed, then the metric dimension of the graph is asymptotically 2 q n − 1 .\",\"PeriodicalId\":8402,\"journal\":{\"name\":\"Ars Math. Contemp.\",\"volume\":\"1 1\",\"pages\":\"231-247\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ars Math. Contemp.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/1855-3974.2125.7b0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Math. Contemp.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/1855-3974.2125.7b0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On resolving sets in the point-line incidence graph of PG(n, q)
Lower and upper bounds on the size of resolving sets and semi-resolving sets for the point-line incidence graph of the finite projective space P G ( n , q ) are presented. It is proved that if n > 2 is fixed, then the metric dimension of the graph is asymptotically 2 q n − 1 .