固定监控摄像机环境下多人实时跟踪

Jinwoo Choi, Jang-Hee Yoo
{"title":"固定监控摄像机环境下多人实时跟踪","authors":"Jinwoo Choi, Jang-Hee Yoo","doi":"10.1109/ICCE.2013.6486824","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a real-time multi-person tracking system operating in fixed surveillance camera environment. We adopt particle filtering as our object tracking framework. Background subtraction is used to generate the ROI. And pedestrian detection is used to initialize each tracker. Object size estimation and tracking failure detection is proposed to improve tracking accuracy and robustness. Experimental results demonstrate that the proposed algorithm tracks multiple persons efficiently in real-time.","PeriodicalId":6432,"journal":{"name":"2013 IEEE International Conference on Consumer Electronics (ICCE)","volume":"8 1","pages":"125-126"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Real-time multi-person tracking in fixed surveillance camera environment\",\"authors\":\"Jinwoo Choi, Jang-Hee Yoo\",\"doi\":\"10.1109/ICCE.2013.6486824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a real-time multi-person tracking system operating in fixed surveillance camera environment. We adopt particle filtering as our object tracking framework. Background subtraction is used to generate the ROI. And pedestrian detection is used to initialize each tracker. Object size estimation and tracking failure detection is proposed to improve tracking accuracy and robustness. Experimental results demonstrate that the proposed algorithm tracks multiple persons efficiently in real-time.\",\"PeriodicalId\":6432,\"journal\":{\"name\":\"2013 IEEE International Conference on Consumer Electronics (ICCE)\",\"volume\":\"8 1\",\"pages\":\"125-126\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Consumer Electronics (ICCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE.2013.6486824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE.2013.6486824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种在固定监控摄像机环境下运行的实时多人跟踪系统。我们采用粒子滤波作为目标跟踪框架。使用背景减法生成ROI。行人检测用于初始化每个跟踪器。为了提高跟踪精度和鲁棒性,提出了目标尺寸估计和跟踪故障检测方法。实验结果表明,该算法能够有效地实时跟踪多人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time multi-person tracking in fixed surveillance camera environment
In this paper, we propose a real-time multi-person tracking system operating in fixed surveillance camera environment. We adopt particle filtering as our object tracking framework. Background subtraction is used to generate the ROI. And pedestrian detection is used to initialize each tracker. Object size estimation and tracking failure detection is proposed to improve tracking accuracy and robustness. Experimental results demonstrate that the proposed algorithm tracks multiple persons efficiently in real-time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信