微水电优化规模优化可再生能源混合发电系统

Syafii, H. D. Laksono, Novizon, R. Fahreza
{"title":"微水电优化规模优化可再生能源混合发电系统","authors":"Syafii, H. D. Laksono, Novizon, R. Fahreza","doi":"10.23919/EECSI50503.2020.9251911","DOIUrl":null,"url":null,"abstract":"This paper presents an analysis of optimal micro hydropower (MH) capacity of hybrid systems to improve renewable energy based power systems. The electricity system was designed by considering river water flow data and solar radiation data at the research location of Universitas Andalas (Unand). Optimal results obtained for the configuration of the Grid, MH, and photovoltaic (PV) with a head height of 30 m and a flow rate of 800 L/s with the lowest Cost of Energy (CoE) value of $ 0.065. As an optimal sizing system has been able to increase the composition of renewable energy generation in the Unand electrical network. The renewable energy fraction has increased from 26.4% to 36.5%. Therefore, determining the optimal capacity will increase the use of renewable energy generation. Conversely, an increase in electricity supply from renewable energy plants will reduce electricity consumption from the State Electricity Company (Perusahaan Listrik Negara, PLN) grid. The latest excess power generation at a low load can be sold to the PLN grid.","PeriodicalId":6743,"journal":{"name":"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)","volume":"164 1","pages":"95-99"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal Sizing of Micro Hydropower to Improve Hybrid Renewable Power System\",\"authors\":\"Syafii, H. D. Laksono, Novizon, R. Fahreza\",\"doi\":\"10.23919/EECSI50503.2020.9251911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an analysis of optimal micro hydropower (MH) capacity of hybrid systems to improve renewable energy based power systems. The electricity system was designed by considering river water flow data and solar radiation data at the research location of Universitas Andalas (Unand). Optimal results obtained for the configuration of the Grid, MH, and photovoltaic (PV) with a head height of 30 m and a flow rate of 800 L/s with the lowest Cost of Energy (CoE) value of $ 0.065. As an optimal sizing system has been able to increase the composition of renewable energy generation in the Unand electrical network. The renewable energy fraction has increased from 26.4% to 36.5%. Therefore, determining the optimal capacity will increase the use of renewable energy generation. Conversely, an increase in electricity supply from renewable energy plants will reduce electricity consumption from the State Electricity Company (Perusahaan Listrik Negara, PLN) grid. The latest excess power generation at a low load can be sold to the PLN grid.\",\"PeriodicalId\":6743,\"journal\":{\"name\":\"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)\",\"volume\":\"164 1\",\"pages\":\"95-99\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EECSI50503.2020.9251911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EECSI50503.2020.9251911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文分析了混合发电系统的最优微水电容量,以改进可再生能源发电系统。电力系统的设计考虑了Andalas大学(Unand)研究地点的河水流量数据和太阳辐射数据。以水头高度为30 m、流量为800 L/s、最低能源成本(CoE)值为0.065美元的电网、MH和光伏(PV)配置为最优结果。作为一个最佳的规模系统已经能够增加可再生能源发电在Unand电网的组成。可再生能源比例从26.4%增加到36.5%。因此,确定最佳容量将增加可再生能源发电的使用。相反,可再生能源发电厂电力供应的增加将减少国家电力公司(Perusahaan Listrik Negara, PLN)电网的用电量。最新的低负荷过剩发电量可以出售给PLN电网。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Sizing of Micro Hydropower to Improve Hybrid Renewable Power System
This paper presents an analysis of optimal micro hydropower (MH) capacity of hybrid systems to improve renewable energy based power systems. The electricity system was designed by considering river water flow data and solar radiation data at the research location of Universitas Andalas (Unand). Optimal results obtained for the configuration of the Grid, MH, and photovoltaic (PV) with a head height of 30 m and a flow rate of 800 L/s with the lowest Cost of Energy (CoE) value of $ 0.065. As an optimal sizing system has been able to increase the composition of renewable energy generation in the Unand electrical network. The renewable energy fraction has increased from 26.4% to 36.5%. Therefore, determining the optimal capacity will increase the use of renewable energy generation. Conversely, an increase in electricity supply from renewable energy plants will reduce electricity consumption from the State Electricity Company (Perusahaan Listrik Negara, PLN) grid. The latest excess power generation at a low load can be sold to the PLN grid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信