大数据核密度估计的质量和效率

Yan Zheng, Jeffrey Jestes, J. M. Phillips, Feifei Li
{"title":"大数据核密度估计的质量和效率","authors":"Yan Zheng, Jeffrey Jestes, J. M. Phillips, Feifei Li","doi":"10.1145/2463676.2465319","DOIUrl":null,"url":null,"abstract":"Kernel density estimates are important for a broad variety of applications. Their construction has been well-studied, but existing techniques are expensive on massive datasets and/or only provide heuristic approximations without theoretical guarantees. We propose randomized and deterministic algorithms with quality guarantees which are orders of magnitude more efficient than previous algorithms. Our algorithms do not require knowledge of the kernel or its bandwidth parameter and are easily parallelizable. We demonstrate how to implement our ideas in a centralized setting and in MapReduce, although our algorithms are applicable to any large-scale data processing framework. Extensive experiments on large real datasets demonstrate the quality, efficiency, and scalability of our techniques.","PeriodicalId":87344,"journal":{"name":"Proceedings. ACM-SIGMOD International Conference on Management of Data","volume":"55 1","pages":"433-444"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":"{\"title\":\"Quality and efficiency for kernel density estimates in large data\",\"authors\":\"Yan Zheng, Jeffrey Jestes, J. M. Phillips, Feifei Li\",\"doi\":\"10.1145/2463676.2465319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kernel density estimates are important for a broad variety of applications. Their construction has been well-studied, but existing techniques are expensive on massive datasets and/or only provide heuristic approximations without theoretical guarantees. We propose randomized and deterministic algorithms with quality guarantees which are orders of magnitude more efficient than previous algorithms. Our algorithms do not require knowledge of the kernel or its bandwidth parameter and are easily parallelizable. We demonstrate how to implement our ideas in a centralized setting and in MapReduce, although our algorithms are applicable to any large-scale data processing framework. Extensive experiments on large real datasets demonstrate the quality, efficiency, and scalability of our techniques.\",\"PeriodicalId\":87344,\"journal\":{\"name\":\"Proceedings. ACM-SIGMOD International Conference on Management of Data\",\"volume\":\"55 1\",\"pages\":\"433-444\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"62\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. ACM-SIGMOD International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2463676.2465319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. ACM-SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463676.2465319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

摘要

核密度估计对于各种各样的应用程序都很重要。它们的构造已经得到了很好的研究,但是现有的技术在大量数据集上是昂贵的,并且/或者只是提供启发式近似而没有理论保证。我们提出了具有质量保证的随机和确定性算法,其效率比以前的算法高几个数量级。我们的算法不需要了解内核或其带宽参数,并且很容易并行化。我们演示了如何在集中式设置和MapReduce中实现我们的想法,尽管我们的算法适用于任何大规模数据处理框架。在大型真实数据集上进行的大量实验证明了我们技术的质量、效率和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quality and efficiency for kernel density estimates in large data
Kernel density estimates are important for a broad variety of applications. Their construction has been well-studied, but existing techniques are expensive on massive datasets and/or only provide heuristic approximations without theoretical guarantees. We propose randomized and deterministic algorithms with quality guarantees which are orders of magnitude more efficient than previous algorithms. Our algorithms do not require knowledge of the kernel or its bandwidth parameter and are easily parallelizable. We demonstrate how to implement our ideas in a centralized setting and in MapReduce, although our algorithms are applicable to any large-scale data processing framework. Extensive experiments on large real datasets demonstrate the quality, efficiency, and scalability of our techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信